\input style ဉ [{\sl Amer.~J.~Math.,\/} {\bf 4} (1881), 39--40], , ~$d$ ~$\log_{10}(1+1/d)$. ⎒ .~ [{\sl Proc.\ Amer.\ Philosophical Soc.,\/} {\bf 78} (1938), 551], . , , " ". , , . ~$u$, ~$(\log_{10} u) \bmod 1$. , ~$d$ , \EQ[1] { (\log_{10} u) \bmod 1 < \log_{10} d, } ~$10 f_u = 10^{(\log_{10} u)\bmod 1}$. , - "" ~$U$, , , , , ~$(\log_{10} U) \bmod 1$ . ( , ~$U \bmod 1$, $U^2 \bmod 1$, $\sqrt{U+\pi}\bmod 1$ ~.~.\ . , .) ዅ, ~\eqref[1], , ~$\log_{10} 2 \approx 30.103\%$, , ~$\log_{10} 3 - \log_{10} 2 \approx 17.609\%$, ~$r$--- , ~$1$ ~$10$, ~$\log_{10} r$ ~$10 f_U \le r$. --- , ~$U$ (.~.\ ). , , ~$U$, ~$(\log_{10} U) \bmod 1$. , , . ⎒ , , ; " " %% 272 . , . , , . , , . .~.~ ~.~坌 [{\sl Ann Math. Stat.,\/} {\bf 32} (1961), 1223--1230]. ~$p(r)$--- , ~$10 f_U \le r$, ~$1\le r \le 10$, ~$f_U$--- ~$U$ . , , , , , , . , - ~$c$; , ~$p(r)$ . ㌍ ~$c$ ~$(\log_{10} U) \bmod 1$ ~$(\log_{10} U + \log_{10} c) \bmod 1$. , ; , ~$1 \le c \le 10$. \EQ { p(r) = \hbox{} ((\log_{10} U) \bmod 1 \le \log_{10} r). } ᎃ , \EQ{ \eqalignno{ p(r) &= \hbox{} ((\log_{10} U + \log_{10} c ) \bmod 1 \le \log_{10} r) = \cr &= \cases { \hbox{} ((\log_{10} U) \bmod 1 \le \log_{10} r - \log_{10} c \cr \hbox{ } (\log_{10} U) \bmod 1 \ge 1 - \log_{10} c) , & ~$c \le r$, \cr \hbox{} (1-\log_{10} c \le (\log_{10} U) \bmod 1 \le 1 + \log_{10} r - \log_{10} c), & ~$c \ge r$, \cr }\cr &= \cases { p (r/c) + 1 - p(10/c), & ~$c \le r$,\cr p(10r/c) - p(10/c), & ~$c \ge r$.\cr } & (2) \cr } } ~$p(r)$ ~$1 \le r \le 10$, ~$p(10^n r) = p(r)+n$; ~$10/c$ ~$d$ ~\eqref[2] \EQ[3] { p(rd) = p(r) + p(d). } , ~\eqref[3] ~$r > 0$ %% 273 ~$1 \le d \le 10$. ~$p(1)=0$, $p(10)=1$, , \EQ{ \displaylines{ 1 = p(10) = p((\root n \of {10})^n) = p(\root n \of {10}) + p((\root n \of {10})^{n-1})= \cr = \ldots = np(\root n \of {10}); \cr } } , ~$m$ ~$n$ ~$p(10^{m/n})=m/n$. , ~$p$ , ~$p(r)=\log_{10} r$, . 厒 , , , . , ~$F(u)$, , , ~$U$ ~$u$, ~$F(u)$ \EQ[4] { p(r) = \sum_m (F(10^m r) - F(10^m)), } ~$-\infty < m < \infty$. , \EQ{ p(r) = \log_{10} r. } , "", \EQ[5] { \sum_m (F(b^m r) - F(b^m)) = \log_b r } ~$1 \le r \le b$ ~$b \ge 2$. ~$F$, ~$b$ ~$r$, ! "- !" , ~$p(r) = \log_{10} r$ \emph{} . , , ; ~$10$ ~$b$, ( ), ~$b$. , , , .~.~ [{\sl AMM,\/} {\bf 76} (1969), 342--348]. , -, , ( , ). %% 274 \emph{ } . , , , , , , . ~$r$ , $1 \le r \le 10$; ~$p(r)$ "" , ~$10^{e_N} \cdot f_N$ "" ~$N$ ~$10 f_N < r$. , , ~"Pr" ~\S~3.5. ㄎ : \EQ[6]{ P_0(n)=\cases{ 1, & ~$n=10^e \cdot f$, ~$10 f < r$, .~.\ ~$(\log_{10} n) \bmod 1 < \log_{10} r$;\cr 0 & .\cr } } , $P_0(1)$, $P_0(2)$,~\dots{} , , . "" , \EQ[7] { P_1(n) = {1\over n} \sum_{1\le k \le n} P_0(k). } ~$\lim_{n\to\infty} P_1(n)$ ""~$p(r)$; ~\S~3.5. . , , \EQ{ P_1(s),\; P_1(10s),\; P_1(100s),\; \ldots,\; P_1(10^n s),\; \ldots, } ~$s$--- , $1 \le s \le 10$. ~$s \le r$, \EQ { \eqalignno{ P_1(10^n s) &= {1 \over 10^n s} ( \ceil{r} -1 + \ceil{10 r} - 10 + \cdots + \ceil{10^{n-1} r} - 10^{n-1} + \floor{10^n s} + 1 - 10^n) = \cr &= {1 \over 10^n s} (r(1+10+\cdots+10^{n-1})+O(n)+\floor{10^n s} - 1 - 10 - \cdots - 10^n) = \cr %% : "\right)", &= {1 \over 10^n s} \left({1\over 9} (10^n r - 10^{n+1}) + \floor{10^n s}\right)+O(n), & (8) \cr } } %% 275 ~$r=r_0.r_1r_2\ldots\,$. ~$n\to\infty$ ~$P_1(10^n s)$ , , ~$1+(r-10)/9s$. , ~$s \le r$, , ~$s > r$; $\floor{10^n s}+1$~ ~$\ceil{10^n r}$, ~$s \ge r$ , ~$10(r-1)/9s$. [.\ J.\ Franel Naturforschende Gesellschaft, Vierteljahrsschrift, {\bf 62} (Z\"urich, 1917), 286--295.] , ~$P_1(n)$ , ~$s$ ~$1$ ~$r$, ~$r$ ~$10$ ~$(r-1)/9$ ~$10(r-1)/9r$, ~$(r-1)/9$. , ~$P_1(n)$ ~$P_1(n)$ ~$\log_{10} r$!   ~$P_1(n)$ , , ~\eqref[7], "" . \EQ[9] { P_{m+1}(n) = {1\over n} \sum_{1\le k \le n} P_m(k). } ⎃ $P_{m+1}(n)$~ , ~$P_m(n)$. ~$P_{m+1}(n)$ ~$n$. , ~$m=0$, , ~$P_{m+1}(10^n s)$. . \proclaim ~Q. ~$m \ge 1$ ~$\varepsilon > 0$ ~$Q_m(s)$, $R_m(s)$ ~$N_m(\varepsilon)$, ~$n > N_m(\varepsilon)$ ~$1 \le s \le 10$ \EQ[10] { \displaynarrow{ \abs{P_m(10^n s) - Q_m(s)} < \varepsilon, \hbox{ ~$s \le r$,}\cr \abs{P^m(10^n s) - (Q_m(s)+R_m(s))} < \varepsilon, \hbox{ ~$s>r$.}\cr } } , ~$Q_m(s)$, $R_m(s)$ \EQ[11] { \eqalign{ Q_m(s) &= {1\over s} \left( {1\over 9} \int_1^{10} Q_{m-1}(t)\,dt +\int_1^s Q_{m-1}(t)\,dt + {1\over 9}\int_r^{10} R_{m-1}(t)\,dt\right);\cr R_m(s) &= {1\over s} \int_r^s R_{m-1}(t)\,dt;\cr Q_0(s) &= 1, \quad R_0(s)= -1.\cr } } %% 276 \proof ~$Q_m(s)$, $R_m(s)$, ~\eqref[11], \EQ[12]{ S_m(t)=\cases{ Q_m(t), & $t \le r$, \cr Q_m(t)+R_m(t), & $t > r$. \cr } } ~$m$. ~$m=1$; ~$Q_1(s)=(1/s)(1+(s-1)+(r-10)/9)= 1+(r-10)/9s$ ~$R_1(s)=(r-s)/s$. ~\eqref[8] , \EQ{ \abs{P_1(10^n s) - S_1(s)} = O(n)/10^n; } ~$m=1$. ~$m > 1$ \EQ{ P_m(10^n s) = {1\over s} \left( \sum_{0 \le j < n} {1 \over 10^{n-j}} \sum_{10^j \le k < 10^{j+1}} {1\over 10^j} P_{m-1}(k) + \sum_{10^n \le k \le 10^n s} {1\over 10^n} P_{m-1}(k) \right). } . \EQ[13]{ \abs{ \sum_{10^j \le k \le 10^j q} {1\over 10^j} P_{m-1}(k) - \sum_{10^j \le k \le 10^j q} {1\over 10^j} S_{m-1} \left({k \over 10^j}\right) } } ~$(q-1)\varepsilon$, ~$1 \le q \le 10$ ~$j > N_{m-1}(\varepsilon)$, ~$S_{m-1}(t)$ , \EQ[14] { \abs{ \sum_{10^j \le k \le 10^j q} {1 \over 10^j} S_{m-1} \left({k\over 10^j}\right) -\int_1^q S_{m-1}(t)\,dt } } ~$\varepsilon$ ~$j$, ~$N$, ~$q$. ~$N$ , ~$N_{m-1}(\varepsilon)$. ዅ, ~$n > N$ \EQ[15]{ \abs{ P_m(10^n s) - {1\over s} \left( \sum_{0 \le j < n} {1 \over 10^{n-j}} \int_1^{10} S_{m-1}(t)\,dt+\int_1^s S_{m-1}(t)\,dt\right)} } \EQ{ \sum_{0 \le j \le N} {M \over 10^{n-j}}+\sum_{N$ ~$\log_{10} r$. ~$Q_m(s)$ ~$R_m(s)$ ~$m$, . %% 278 \proclaim ⅎ~F. ~$\varepsilon>0$ ~$N$, \EQ[17]{ \abs{P_m(n) - \log_{10} r} < \varepsilon } ~$m$,~$n>N$. \proof ~Q, , , ~$M$, ~$\varepsilon$, ~$s$ ~$1 \le s \le 10$ ~$m > M$ \EQ[18] { \abs{Q_m(s) - \log_{10} r} < \varepsilon \hbox{ } \abs{R_m(s)} < \varepsilon. } ~$R_m$ ~\eqref[11]. , ~$R_0(s)=-1$, $R_1(s)=-1+r/s$, $R_2(s) = -1 + (r/s)(1+\ln (s/r))$ \EQ[19]{ R_m(s) = -1 + {r \over s} \left(1+{1\over 1!}\ln\left({s \over r}\right) + {1\over 2!} \left(\ln \left({s\over r}\right)\right)^2+ \cdots + {1 \over (m-1)!} \left( \ln\left({s\over r}\right)\right)^{m-1}\right). } ~$s$ \EQ{ -1 + (r/s) \exp (\ln (s/r)) = 0. } ~\eqref[11] ~$Q_m$ \EQ[20]{ Q_m(s) = {1\over s} \left( c_m + 1 + \int_1^s Q_{m-1}(t)\,dt\right), } \EQ[21]{ c_m = {1\over 9} \left( \int_1^{10} Q_{m-1}(t)\,dt + \int_r^{10} R_{m-1}(t)\,dt \right) -1. } , ~\eqref[20], ; , , , ; , \EQ[22]{ Q_m(s) = 1 + {1\over s} \left( c_m + {1\over 1!}c_{m-1}\ln s + {1\over 2!}(\ln s)^2 + \cdots + {1\over (m-1)!} (\ln s)^{m-1}\right). } ~$c_m$, ~\eqref[19], \eqref[21] ~\eqref[22] \EQ[23]{ \displaynarrow{ c_1 = (r-10)/9,\cr c_{m+1} = {1\over 9} \left( c_m \ln 10 + {1\over 2!}c_{m-1}(\ln 10)^2 + \cdots + {1\over m!}c_1(\ln 10)^m + r \left( 1+ {1\over 1!} \ln {10\over r} + \cdots + {1\over m!} \left( \ln {10 \over r} \right)^m \right) - 10 \right).\cr } } %% 279 풀 , . \EQ{ C(z) = c_1 z + c_2 z^2 + c_3 z^3 + \ldots \, . } ~$10^z = 1 + z\ln 10 + z^2 (1/2!) (\ln 10)^2 + \ldots\,$, , \EQ{ c_{m+1} = {1\over 10}c_{m+1} + {9\over 10}c_{m+1} = {1\over 10} \left(c_{m+1} + c_m \ln 10 + \cdots + {1\over m!} c_1 (\ln 10)^m\right) + {r\over 10} \left(1+\cdots+{1\over m!}\left(\ln {10\over r}\right)^m\right) - 1 } ~$z^{m+1}$ \EQ[24]{ {1\over 10} C(z) 10^z + {rz \over 10} \left({10\over r}\right)^z \left({1\over 1-z}\right) - {1\over 1-z}. } 풎 ~$m$, ~\eqref[24] ~$C(z)$, \EQ[25]{ C(z) = { -z \over 1-z} \left( {(10/r)^{z-1} -1 \over 10^{z-1}-1}\right). } 璎 , ~$C(z)$. ~\eqref[25] ~$z \to 1$ ~$\ln (10/r) / \ln 10 = 1 - \log_{10} r$, , \EQ[26]{ C(z) + {1 - \log_{10} r \over 1 - r} = R(z) } ~$z$ \EQ{ \abs{z} < \abs{1+{2 \pi i \over \ln 10}}. } , ~$R(z)$ ~$z=1$, . 풎 , ~$C(z)$ ~$(\log_{10} r - 1)/(1-z)$, \EQ{ \lim_{m \to \infty} c_m = \log_{10} r -1. } , ~\eqref[22], , $Q_m(s)$~ \EQ{ 1 + { \log_{10} r -1 \over s} \left( 1+ \ln s + {1\over 2!}(\ln s)^2 + \ldots \right) = \log_{10} r } ~$1 \le s \le 10$. \proofend , , , , %% 280 , . : .~䀐 X.~ [Nature, {\bf 155} (Jan.~13, 1945), 52--53]. ~Q ~F, , , 䋅 [{\sl AMM,\/} {\bf 73} (1966), 1056--1061]. , , 틀~.~ [{\sl Math. Comp.,\/} {\bf 19} (1965), 143--144]. \excercises \ex[13] ~$u$ ~$v$--- , , , ᓈ, , ~$u \oplus v$ ? \ex[40] ᓈ. \ex[15] , , , ~"$23$". \ex[18] , , . \emph{,} .~.~, ~$\log_{10} x$ ~$x$, ? \rex[20] , ~$U$ ~$0 < U < 1$. ~$U$? \ex[22] $n+1$~, $p$~ , $n-p$~ . 풎 , , .~.\ , ~$2^{2^{n-p}}$. To \emph{} , $p+2$~ ($(p+2)/4$~ ) $n-p-2$~ ; ~$16^{2^{n-p-2}}=2^{2^{n-p}}$, .~.\ , , . , - , ~$16$ , ; , $p+2$~ "". \hiddenpar , , , $0$, $1$, $2$ ~$3$~ ? , , . \ex[28] , ~$F(u)$, ~\eqref[5] ~$b\ge 2$ ~$r$ ~$1 \le r \le b$. \ex[23] ~\eqref[10] ~$m=0$ ~$N_0(\varepsilon)$? \ex[24] ~$\$--- , , ~$\lim_{n\to \infty} x_{\floor{10^n s}} = q(s)$ ~$s$ - %% 281 \bye