вращает ответ доверенному клиенту.
  • Доверенный клиент, используя опцию маршрутизации источника, переправляет пакет к хосту атакующего.
  • Многие хосты Unix принимают пакеты с маршрутизацией источника и будут передавать их по пути, указанному в пакете. Многие маршрутизаторы также принимают пакеты с маршрутизацией источника, в то время как некоторые маршрутизаторы могут быть сконфигурированы таким образом, что будут блокировать такие пакеты.

    Еще более простым способом маскировки под клиента является ожидание того момента времени, когда клиентская система будет выключена, и последующая маскировка под нее. Во многих организациях сотрудники используют персональные ЭВМ с сетевой математикой TCP/IP для подключения к хостам с Unixом и используюют машины с Unix как серверы ЛВС. ПЭВМ часто используют NFS для получения доступа к директориям и файлам на сервере(NFS использует только IP-адреса для аутентификации клиентов). Атакующий может сконфигурировать по окончании работы свой ПЭВМ таким образом, что он будет иметь то же самое имя и IP-адрес, что и другая машина, а затем инициировать соединение с Unixовским хостом, как если бы он был доверенным клиентом. Это очень просто сделать и именно так поступают атакующие-сотрудники организации.

    Электронную почту в Интернете особенно легко подделать, и ей вообще нельзя доверять, если в ней не применяются расширения, такие как электронная подпись письма[NIST94a]. Например, давайте рассмотрим взаимодействие между хостами Интернета при обмене почтой. Взаимодействие происходит с помощью простого протокола, использующего текстовые команды. Злоумышленник может легко ввести эти команды вручную, используя TELNET для установления сеанса с портом SMTP( простой протокол передачи почты). Принимающий хост доверяет тому, что заявляет о себе хост-отправитель, поэтому можно легко указать ложный источник письма, введя адрес электронной почты как адрес отправителя, котоырй будет отличаться от истинного адреса. В результате, любой пользователь, не имеющий никаких привилегий, может фальсифицировать электронное письмо.

    В других сервисах, таких как DNS, также можно замаскироваться под другую машину, но сделать это несколько сложнее, чем для электронной почты. Для этих сервисов до сих пор существуют угрозы, и их надо учитывать тому, кто собирается пользоваться ими.

    1.3.5 Недостатки служб ЛВС и взаимное доверие хостов друг к другу

    Хосты тяжело поддерживать в безопасном состоянии и это занимает много времени. Для упрощения управления хостами и большего использования преимуществ ЛВС, некоторые организации используют такие сервисы, как NIS(Network Information Service) и NFS(Network File system). Эти сервисы могут сильно уменьшить время на конфигурирование хостов, позволяя управлять рядом баз данных, таких как файлы паролей, с помощью удаленного доступа к ним и обеспечивая возможность совместного использования файлов и данных. К сожалению, эти сервисы небезопасны по своей природе и могут использоваться для получения доступа грамотными злоумышленниками. Если скомпрометирован центральный сервер, то другие системы, доверяющие центральной системе, также могут быть легко скомпрометированы.

    Некоторые сервисы, такие как rlogin, позволяют хостам "доверять" друг другу для удобства работы пользователей и облегчения совместного использования систем и устройств. Если в систему было совершено проникновение или ее обманули с помощью маскарада, и этой системе другие системы, то для злоумышленника не составит труда получить доступ к другим системам. Например, пользователь, зарегистрированный на нескольких машинах, может избавиться от необходимости вводить пароль, сконфигурировав себя на этих машинах так, что они будут доверять подключению с основной системы пользователя. Когда пользователь использует rlogin для подключения к хосту, то машина, к которой подключаются, не будет спрашивать пароль, а подключение будет просто разрешено. Хотя это и не так уж плохо, так как пароль пользователя не передается и не сможет быть перехвачен, это имеет тот недостаток, что если злоумышленник проникнет на основную машину под именем пользователя, то злоумышленник легко сможет воспользоваться rlogin для проникновения в счета пользователя на других системах. По этой причине использование взаимного доверия хостов друг к другу не рекомендуется[Bel89][Ches94].

    1.3.6 Сложность конфигурирования и мер защиты

    Системы управления доступом в хостах часто сложны в настройке и тяжело проверить, правильно ли они работают. В реузльтате неправильно сконфигурированные меры защиты могут привести к проникновению злоумышленников. Несколько крупных производителей Unix все еще продают свои системы с системой управления доступом, сконфигурированной так, что пользователям предоставлен маскимальный ( то есть наименее безопасный) доступ, который может привести к неавторизованному доступу, если не будет произведена переконфигурация.

    Ряд инцидентов с безопасностью произошел в Интернете отчасти из-за того, что злоумышленники обнаружили уязвимые места( позднее их обнаружили пользователи, группы компьютерной безопасности и сами производители) . Так как большая часть современных вариантов Unix позаимствовала свой сетевой код из версии BSD, и так как исходный код этой версии широко доступен, злоумышленники смогли изучить его на предмет ошибок и условий, при которых их можно использовать для получения доступа к системам. Отчасти ошибки существуют из-за сложности программ и невозможности проверить их во всех средах, в которых они должны работать. Иногда ошибки легко обнаруживаются и исправляются, но бывает и так, что надо, как минимум, переписать все приложение, что является последним средством( программа sendmail тому пример).

    1.3.7 Безопасность на уровне хостов не мсштабируется.

    Безопасность на уровне хостов плохо шкалируется: по мере того, как возрастает число хостов в сети, возможности по обеспечению гарантий безопасности на высоком уровне для каждого хоста уменьшаются. Учитывая то, что админстрирование даже одной системы для поддержания безопасности в ней может оказаться сложным, управление большим чсислом таких систем может легко привести к ошибкам и упущениям. Важно также помнить, что зачастую важность работы системных администраторов не понимается и эта работа выполняется кое-как. В результате некоторые системы могут оказаться менее безопасными, чем другие, и именно эти системы станут слабым звеном, которое в конечном счете приведет к появлению уязвимого места в системе безопасности.

    Если обнаруживается уязвимость в сетевом ПО, сети, которая не защищена брандмауэром, нужно срочно исправить ошибку на всех системах, где она обнаружена. Как уже говорилось в пункте 1.3.2, некоторые уязвимые места позволяют получить легкий доступ с правами суперпользователя Unix. Организация, имеющая много Unix-хостов, будет особенно уязвима к атакам злоумышленников в такой ситуации. Заделывание уязвимых мест на многих системах за короткий промежуток времени просто невозможно, и если исопльзуются различные версии ОС, может оказаться вообще невозможным. Такие сети будутт просто-таки напрашиваться на атаки злоумышленников.

    1.4 Насколько уязвимы сети организаци в Интернете?

    Как уже отмечалось в предыдущих разделах, ряд служб TCP и UDP плохо обеспечивают безопасность в современной среде в Интернете. При миллионах пользователей, подключенных к Интернету, и при том, что правительства и промышленность зависят от Интернета, недостатки в этих службах, а также легкодоступность исходного кода и средств для автоматизации проникновения в системы могут сделать сети уязвиыми к проникновениям в них. Тем не менее, настоящий риск при использовании Интернета трудно оценить, и непросто сказать, насколько уязвима сеть к атакам злоумышленников. Такой статистики не ведется.

    Координационный Центр по групп расследования происшествий с компьютерной безопасностью(CERT/CC) ведет некоторую статистику о числе инцидентов, которые они расследовали после его создания в 1988 году. Числа в этой статистике увеличиваются скачкообразно каждый год, но следует помнить, что и число машин в Интернете также растет. В некоторых случаях CERT считает несколько проникновений одного и того жн типа одним происшествием, поэтому одно происшествие может состоять из нескольких сотен проникновений в ряд систем. Трудно сказать, насколько пропорциональны число инцидентов и число проникновений. Эта проблема также осложняется тем, что чем больше людей знают о существовании групп по расследованию инцидентов, тем больше вероятность того, что они сообщат о происшествии, поэтому на самом деле непонятно, то ли происходит все больше происшествий, то ли сообщается о все большем их проценте.

    NIST считает, что Интернет, хотя и является очень полезной и важной сетью, в то же самое время очень уязвим к атакам. Сети, которые соединены с Интернетом, подвергаются некоторому риску того, что их системы будут атакованы или подвергнуты некоторому воздействию со стороны злоумышленников, и что риск этого значителен. Следующие факторы могут повлиять на уровень риска:

    Чем больше систем в сети, тем труднее контролировать их безопасность. Аналогично, если сеть соединена с Интернетом в нескольких местах, то она будет более уязвима чем сеть с одним шлюзом. В то же самое время, то, насколько готова к атаке организация, или то, насколько она зависит от Интернета, может увеличить или уменьшить риск. Сеть, имеющая привлекательный для злоумышленников профиль, может подвергнуться большему числу атак с целью получения информации, хранящейся в ней. Хотя, стоит сказать, что "молчаливые" мало посещаемые сети также привлекательны для злоумышленников, так как им легче будет скрыть свою активность.

    NIST заявляет, что сети, которые используют рекомендованные процедуры и меры защиты для повышения компьютерной безопасности, будут подвергаться значительно меньшему риску атак. Брандмауэры в сочетании с одноразовыми паролями, которые устойчивы к их перехвату, могут увеличить общий уровень безопасности сети и сделать использование Интернета достаточно безопасным. Следующие главы содержат более детальное описание брандмауэров и того, как они могут использованы для защиты от многих угроз и уязвимых мест, описанных в этой главе.

    Глава 2. Введение в брандмауэры --------------------------------------------------------------- Original is here http://eye.wplus.spb.ru/www/kvn/800-10/chap2.htm ║ http://eye.wplus.spb.ru/www/kvn/800-10/chap2.htm Перевод Владимира Казеннова (kvn@win.wplus.net) ---------------------------------------------------------------

    Можно найти решение ряд проблем с безопасностью в Интернете, описанных в главе 1, или, по крайней мере, сделать их менее опасными, если использовать существующие и хорошо известные технологии и меры защиты на уровне хостов. Брандмауэр может значительно повысить уровень безопасности сети организации и сохранить в то же время доступ ко всем ресурсам Интернете. Эта глава дает обзор брандмауэров, который включает в себя описание того, как они устраняют опасность уязвимых мест, описанных в главе 1, от чего не защищают брандмауэры и компоненты, составляющие брандмауэр. Эта глава особое внимание обращает на использование усиленной аутентификации и важность политики безопасности при определении того, как брандмауэр будет реализовывать схему защиты.

    Рисунок 2.1 Пример брандмауэра с маршрутизатором и прикладным шлюзом

    2.1 Понятие брандмауэра

    Наверное, лучше всего начать с описания того, что НЕ является брандмауэром: брандмауэр - это не просто маршрутизатор, хост или группа систем, которые обеспечивают безопасность в сети. Скорее, брандмауэр - это подход к безопасности; он помогает реализовать политику безопасности, которая определяет разрешенные службы и типы доступа к ним, и является реализацией этой политики в терминах сетевой конфигурации, нескольких хостов и маршрутизаторов, и других мер защиты, таких как усиленная аутентификация вместо статических паролей. Основная цель системы брандмауэра - управление доступом К или ИЗ защищаемой сети. Он реализует политику сетевого доступа, заставляя проходить все соединения с сетью через брандмауэр, где они могут быть проанализированы и разрешены либо отвергнуты.

    Система брандмауэра может быть маршрутизатором, персональным компьютером, хостом, или группой хостов, созданной специально для защиты сети или подсети от неправильного использования протоколов и служб хостами, находящимися вне этой подсети. Обычно система брандмауэра создается на основе маршрутизаторов верхнего уровня, обычно на тех, которые соединяют сеть с Интернетом, хотя может быть создана и на других маршрутизаторах, для защиты только части хостов или подсетей.

    2.2 Почему именно брандмауэры?

    Оснвоной причиной использования брандмауэров является тот факт, что без брандмауэра системы подсети подвергаются опасности использования уязвимых мест служб, таких NFS и NIS, или сканирования и атак со стороны хостов в Интернете. В среде без брандмауэра сетевая безопасность целиком зависит от безопасности хостов и все хосты должны в этом случае взаимодействовать для достижения одинаково высокого уровня безопасности. Чем больше подсеть, тем труднее поддерживать все хосты на одном уровне безопасности. Ошибки и упущения в безопасности стали распространенными, проникновения происходят не в результате хитроумных атак, а из-за простых ошибок в конфигурировании и угадываемых паролей.

    Подход с использованием брандмауэра имеет многочисленные преимущества для сетей и помогает повысить безопасность хостов. Следующие разделы кратко описывают выгоды использования брандмауэра.

    2.2.1 Защита от уязвимых мест в службах

    Брандмауэр может значительно повысить сетевую безопасность и уменьшить риски для хостов в подсети путем фильтрации небезопасных по своей природе служб. В результате подсеть будет подвергаться гораздо меньшему числу опасностей, так как только через брандмауэр смогут пройти только безопасные протоколы.

    Например, брандмауэр может запретить, чтобы такие уязвимые службы, как NFS, не использовались за пределами этой подсети. Это позволяет защититься от использования этих служб посторонними атакующими, но продолжать использовать их внутри сети, не подвергаясь особой опасности. Поэтому можно будет спокойно использовать такие удобные службы, как NFS и NIS, специально разработанные для уменьшения затрат на администрирование в локальной сети.

    Брандмауэры также могут обеспечить защиту от атак с использованием маршрутизации, таких как маршрутизация источника и попыток изменить маршруты передачи данных с помощью команд перенаправления ICMP. Брандмауэр может заблокировать все пакеты с маршрутизацией источника и перенаправленя ICMP, а затем информировать администраторов об инцидентах.

    2.2.2 Управляемый доступ к систем сети

    Брандмауэр также предоставляет возможности по управлению доступом к хостам сети. Например, некоторые хосты могут быть сделаны достижимыми из внешних сетей, в то время как доступ к другим системам извне будет запрещен. Сеть может запретить доступ к своим хостам извне, за исключением особых случаев, таких как почтовые сервера или информационные сервера.

    Эти свойства брандмауэров требуются при политике управления доступом, построенной по принципу: не предоставлять доступ к хостам или службам, к которым доступ не требуется. Другими словами, зачем давать доступ к хостам и службам, которые могут использоваться атакующими, когда на самом деле он не нужен или не требуется? Если, например, пользователю не нужно, чтобы кто-то в сети мог получить доступ к его рабочей станции, то брандмауэр как раз и может реализовать этот вид политики.

    2.2.3 Концентрированная безопасность

    Брандмауэр может на самом деле оказаться недорогим для организации из-за того, что большинство или все изменения в программах и дополнительные программы по безопасности будут установлены на системе брандмауэра, а не распределены по большому числу хостов. В частности, системы одноразовых паролей и другие дополнительные программы усиленной аутентификации могут быть установлены только на брандмауэре, а не на каждой системе, которой нужно обращаться к Интернету.

    Другие подходы к сетевой безопасности, такие как Kerberos[NIST94c] требуют модификации программ на каждой системе в сети. Поэтому, хотя Kerberos и другие технологии также должны рассматриваться из-за их преимуществ и могут оказаться наиболее подходящими, чем брандмауэры в определенных ситуациях, все-таки брандмауэры проще в реализации, так как специальные программы требуются только на брандмауэре.

    2.2.4 Повышенная конфиденциальность

    Конфиденциальность очень важна для некоторых организаций, так как то, что обычно считается безобидной информацией, может на самом деле содержать полезные подсказки для атакующего. Используя брандмауэр, некоторые сети могут заблокировать такие службы, как finger и доменную службу имен. finger дает информацию о пользователях, такую как время последнего сеанса, читалась ли почта, и другие данные. Но finger может дать атакующему информацию о том, как часто используется система, работают ли сейчас в этой системе пользователи, и может ли быть система атакована, не привлекая при этом внимания.

    Брандмауэры также могут быть использованы для блокирования информации DNS о системах сети, поэтому имена и IP-адреса хостов в сети не станут известны хостам в Интернете. Некоторые организации уже убедились в том, что блокируя эту информацию, они скрывают ту информацию, которая была бы полезна для атакующего.

    2.2.5 Протоколирование и статистика использования сети и попыток проникновения

    Если все доступ к Интернету и из Интернета осуществляется через брандмауэр, то брандмауэр может протоколировать доступ и предоставить статистику об использовании сети. При правильно настроенной системе сигналов о подозрительных событиях (alarm), брандмауэр может дать детальную информацию о том, были ли брандмауэр или сеть атакованы или зондированы.

    Важно собирать статистику использования сети и доказательства зондирования по ряду причин. Прежде всего нужно знать наверняка, что брандмауэр устойчив к зондированию и атакам, и определить, адекватны ли меры защиты брандмауэра. Кроме того, статистика использования сети важна в качестве исходных данных при проведении исследований для формулирования требований к сетевому оборудованию и программам и анализе риска.

    2.2.6 Претворение в жизнь политики

    И наконец, самое важное - брандмауэр предоставляет средства реализации и претворения в жизнь политики сетевого доступа. Фактически, брандмауэр обеспечивает управление доступом для пользователей и служб. Поэтому, политика сетевого доступа может быть реализована с помощью брандмауэра, в то время как без него, такая политика зависит целиком от доброй воли пользователей. Организация может зависеть от своих пользователей, но не должна зависеть от доброй воли всех пользователей Интернета.

    2.3 Проблемы, возникающие из-за брандмауэров

    Помимо описанных выше преимуществ использования брандмауэров, имеет место ряд недостатков при их использовании и ряд проблем, от которых брандмауэры не могут защитить. Брандмауэр не является панацеей от всех проблем безопасности, связанных с Интернетом.

    2.3.1 Ограничение в доступе к нужным службам

    Самым очевидным недостатком брандмауэра является то, что он может блокировать ряд служб, которые используют пользователи, такие как TELNET, FTP, X Windows, NFS и др. Тем не менее, эти недостатки не присущи только брандмауэрам; сетевой доступ также может ограничиваться при защите на уровне хостов в соответствии с политикой безопасности. Хорошо продуманная политика безопасности, в которой найден баланс между требованиями безопасности и потребностями пользователей, может сильно помочь при решении проблем из-за ограничений в доступе к службам.

    Некоторые сети могут иметь топологию, которая не позволяет применить брандмауэр, или использовать службы, такие как NFS, таким образом, что использование брандмауэра потребует серьезных ограничений при работе в сети. Например, в сети может требоваться использование NFS и NIS через основные маршрутизаторы. В такой ситуации стоимость установки брандмауэра нужно сравнить с ущербом, который понесет организация от атаки, использующей уязвимые места, защищаемые брандмауэром, то есть провести анализ риска, а затем принять решение на основании его результатов. Могут оказаться более уместными другие решения, такие как Керберос, но эти решения также имеют свои недостатки. [NIST94c] содержит дополнительную информацию о Керберос и других потенциальных решениях.

    2.3.2 Большое количество остающихся уязвимых мест

    Во-вторых, брандмауэры не защищают от черных входов(люков) в сети. Например, если можно осуществить неограниченный доступ по модему в сеть, защищенную брандмауэром, атакующие могут эффективно обойти брандмауэр[ Iiaf91] . Сейчас скорости модемов достаточны для того, чтобы сделать возможным использование SLIP(Serial Line IP) и PPP(Point-to-Point Protocol); SLIP или PPP-соединение внутри защищенной сети по сути является еще одним соединением с сетью и потенциальным уязвимым местом. Зачем нужен брандмауэр, если разрешен неограниченный доступ по модему?

    2.3.3 Плохая защита от атак своих сотрудников

    Брандмауэры обычно не обеспечивают защиты от внутренних угроз. Хотя брандмауэр может защищать от получения посторонними лицами критических данных, он не защищает от копирования своими сотрудниками данных на ленту или дискету и выноса ее за пределы сети. Поэтому, было бы ошибкой думать, что наличие брандмауэра защищает от атак изнутри или атак, для защиты от которых нужен не брандмауэр. Наверное, не стоит вкладывать значительные ресурсы в брандмауэр, если есть другие способы украсть данные.

    2.3.4 Другие проблемы

    С брандмауэром также связан ряд других проблем:

    Несмотря на эти недостатки NIST рекомендует, чтобы организации защищали свои ресурсы с помощью брандмауэров и других средств безопасности.

    2.4 Компоненты брандмауэра

    Основными компонентами брандмауэра являются:

    Следующие разделы описывают более детально каждую из этих компонент.

    2.4.1 Политика сетевого доступа

    Имеется два вида политики сетевого доступа, которые влияют на проектирование, установку и использование системы брандмауэра. Политика верхнего уровня является проблемной концептуальной политикой, которая определяет, доступ к каким сервисам будет разрешен или явно запрещен из защищаемой сети, как эти сервисы будут использоваться, и при каких условиях будет делаться исключение и политика не будет соблюдаться. Политика нижнего уровня описывает, как брандмауэр должен на самом деле ограничивать доступ и фильтровать сервисы, которые указаны в политике верхнего уровня. Следующие разделы кратко описывают эти политики.

    Политика доступа к сервисам

    Политика доступа к сервисам должна фокусироваться на проблемах использования Интернета, описанных выше, и, судя по всему, на всем доступе к сети извне( то есть политика доступа по модемам, соединений SLIP и PPP). Эта политика должна быть уточнением общей политики организации в отношении защиты информационных ресурсов в организации. Чтобы брандмауэр успешно защищал их, политика доступа к сервисам должна быть реалистичной и согласовываться с заинтересованными лицами перед установкой брандмауэра. Реалистическая политика - это такая политика, в которой найден баланс между защитой сети от известных рисков, но в то же время обеспечен доступ пользователей к сетевым ресурсам. Если система брандмауэра запрещает или ограничивает использование некоторых сервисов, то в политике должна быть явно описана строгость, с которой это делается, чтобы предотвратить изменение параметров средств управления доступом сиюминутным образом. Только поддерживаемая руководством реалистическая политика может обеспечить это.

    Брандмауэр может реализовывать ряд политик доступа к сервисам, но типичная политика может запрещать доступ к сети из Интернета, и разрешать только доступ к Интернету из сети. Другой типичной политикой может быть разрешение некоторого доступа из Интернета, но только к избранным системам, таким как информационные сервера и почтовые сервера. Брандмауэры часто реализуют политик доступа к сервисам, которые позволяют пользователям сети работать из Интернета с некоторыми избранными хостами, но этот доступ предоставляется, только если он сочетается с усиленной аутентификацией.

    Политика проекта брандмауэра

    Она специфична для конкретного брандмауэра. Она определяет правила, используемые для реализации политики доступа к сервисам. Нельзя разрабатывать эту политику, не понимая такие вопросы, как возможности и ограничения брандмауэра, и угрозы и узявимые места, связанные с TCP/IP. Как правило, реализуется одна из двух базовых политик проекта:

    1. разрешить доступ для сервиса, если он явно не запрещен
    2. запретить доступ для сервиса, если он явно не разрешен

    Брандмауэр, который реализует первую политику, пропускает все сервисы в сеть по умолчанию, нсли только этот сервис не был явно указан в политике управления доступом как запрещенный. Брандмауэр, который реализует вторую политику, по умолчанию запрещает все сервисы, но пропускает те, которые указаны в списке разрешенных сервисов. Вторая политика следует классической модели доступа, используемой во всех областях информационной безопасности.

    Первая политика менее желательна, так как она предоставляет больше способов обойти брандмауэр, например, пользователи могут получить доступ к новым сервисам, не запрещаемым политикой( или даже не указанных в политике), или запустить запрещенные сервисы на нестандартных портах TCP/UDP, которые не запрещены политикой. Определенные сервисы, такие как X Windows , FTP, ARCHIE и RPC, сложно фильтровать [Chap92],[Ches94], и для них лучше подходит брандмауэр, реализующий первую политику. Вторая политика строже и безопаснее, но ее тяжелее реализовать и она может повлиять на работу пользователей в том отношении, что ряд сервисов, такие, как описанные выше, могут оказаться блокированными или использование их будет ограничено.

    Взаимосвязь между концептуальной политикой доступа к сервисам и соответствующей ей второй частью описана выше. Эта взаимосвязь существует из-за того, что реализация политики доступа к сервисам сильно зависит от возможностей и ограничений системы брандмауэра, а также уязвимых мест, имеющихся в разрешенных интернетовских сервисах. Например, может оказаться необходимым запретить сервисы, разрешенные политикой доступа к сервисам, если уязвимые места в них не могут эффективно контролироваться политикой нижнего уровня и, если безопасность сети важнее всего. С другой стороны, организация, которая сильно зависит от этих сервисов при решении своих задач, может принять это более высокий риск и разрешить доступ к этим сервисам. Эта взаимосвязь приводит к тому, что формулирование обоих политик становится итеративным процессом.

    Политика доступа к сервисам - самый важный компонент из четырех, описанных выше. Остальные три компонента используются для реализации политики. ( И, как отмечалось выше, политика доступа к сервисам должна отражать общую политику безопасности организации). Эффективность системы брандмауэра при защите сети зависит от типа используемой реализации его, от правильности процедур работы с ним, и от политики доступа к сервисам.

    2.4.2 Усиленная аутентификация

    Разделы 1.3, 1.3.1 и 1.3.2 описывали инциденты в Интернете, произошедшие отчасти из-за уязвимости традиционных паролей. Уже много лет пользователям рекомендуется выбирать такие пароли, которые было бы тяжело угадать и не сообщать их никому. Тем не менее, даже если пользователь следует этому совету( а многие и этого не делают), то тот факт, что злоумышленники могут наблюдать за каналами в Интернете и перехватывать передающиеся в них пароли, делает традиционные пароли устаревшими.

    Разработан ряд мер усиленной аутентификации, таких как смарт-карты, биометрические механизмы, и программные механизмы, для защиты от уязвимости обычных паролей. Хотя они и отличаются друг от друга, все они одинаковы в том отношении, что пароли, генерируемые устройством усиленной аутентификации, не могут быть повторно использованы атакующим, который перехватывает траффик соединения. Так как проблема с паролями в Интернете является постоянной, брандмауэр для соединения с Интернетом, который не имеет средств усиленной аутентификации или не использует их, бессмысленен.

    Ряд наиболее популярных устройств усиленной аутентификации, используемых сегодня, называются системами с одноразовыми паролями. Смарт-карта, например, генерирует ответ, который хост использует вместо традиционного пароля. Так как смарт-карта работает совместно с программой или оборудованием на хосте, генерируемые ответы уникальны для каждого установления сеанса. Результатом является одноразовый пароль, который, если перехватывается, не может быть использован злоумышленником для установления сеанса с хостом под видом пользователя. [NIST94a] и [NIST91a] более детально описывают устройства усиленной аутентификации и средства защиты на их основе.


    Рисунок 2.2 Использование усиленной аутентификации в брандмауэре для предварительной аутентификации трафика TELNET, FTP

    Так как брандмауэры могут централизовать управление доступом в сети, они являются логичным местом для установки программ или устройств усиленной аутентификации. Хотя меры усиленной аутентификации могут использоваться на каждом хосте, более практичным является их размещение на брандмауэре. Рисунок 2.2 показывает, что в сети без брандмауэра, использующего меры усиленной аутентификации, неаутентифицированный траффик таких приложений как TELNET или FTP, может напрямую проходить к системам в сети. Если хосты не используют мер усиленной аутентификации, злоумышленник может попытаться взломать пароли или перехватывать сетевой трафик с целью найти в нем сеансы, в ходе которых передаются пароли. Рисунок 2.2 также показывает сеть с брандмауэром, использующим усиленную аутентификацию, при которой сеансы TELNET или FTP, устанавливаемые со стороны Интернета с системами сети, должны проходить проверку с помощью усиленной аутентификации перед началом работы. Сами системы сети могут продолжать требовать статические пароли перед доступом к себе, но эти пароли нельзя будет использовать, даже если их перехватить, так как меры усиленной аутентификации и другие компоненты брандмауэра не позволят злоумышленнику проникнуть или обойти брандмауэр.

    Части 2.4.4 и 3 содержат дополнительную информацию об использовании мер усиленной аутентификации с брандмауэрами. Смотри [NIST94b] для получения более подробной информации об использовании мер усиленной аутентификации на хостах.

    2.4.3 Фильтрация пакетов

    Фильтрация IP-пакетов обычно выполняется с помощью маршрутизатора с фильтрацией пакетов, осуществляющего ее, когда пакеты передаются между интерфейсами маршрутизатора. Фильтрующий маршрутизатор обычно может фильтровать IP-пакеты на основе группы полей из следующих полей пакета:

    Не все фильтрующие маршрутизаторы сейчас фильтруют по TCP/UDP-порту отправителя, но многие производители начали включать такую возможность. Некоторые маршрутизаторы проверяют, с какого сетевого интерфейса маршрутизатора пришел пакет, и затем используют эту информацию как дополнительный критерий фильтрации. Некоторые версии Unix имеют возможность фильтрации пакетов, но далеко не все.

    Фильтрация может быть использована различным образом для блокирования соединений от или к отдельным хостам или сетям, и для блокирования соединений к различным портам. Организации может понадобиться блокировать соединения от специфических адресов, таких как хосты или сети, которые считаются враждебными или ненадежными. Или же организация может захотеть блокировать соединения от всех адресов, внешних по отношению к организации( с небольшими исключениями, такими как SMTP для получения почты).

    Добавление фильтрации по портам TCP и UDP к фильтрации по IP-адресам дает большую гибкость. Напомним главу 1, в которой говорилось, что сервера, такие как демон TELNET, связаны обычно с конкретными портами, такими как порт 23 для TELNET. Если брандмауэр может блокировать соединения TCP или UDP к или от определенных портов, то можно реализовать политику, при которой определенные виды соединений могут быть осуществлены только с конкретными хостами, но не с другими. Например, организация может захотеть блокировать все входящие соединения для всех хостов, кроме нескольких систем, входящих в состав брандмауэра. Для этих систем могут быть разрешены только определенные сервисы, такие как SMTP для одной системы, и TELNET или FTP для другой. При фильтрации по портам TCP и UDP эта политика может быть легко реализована маршрутизатором с фильтрацией пакетов или хостом с возможностью фильтрации пакетов.


    Рисунок 2.3 Пример фильтрации пакетов для TELNET и SMTP

    Для примера рассмотрим политику, в которой разрешаются только определенные соединения с сетью с адресом 123.4.*.* Соединения TELNET разрешаются только с одним хостом, 123.4.5.6, который может быть прикладным TELNET-шлюзом сети, а SMTP-соединения разрешаются только с двумя хостами, 123.4.5.7 и 123.4.5.8, которые могут быть двумя почтовыми шлюзами сети. NNTP(Network News Transfer Protocol) разрешается только от взаимодействующего с сетью сервера новостей, 129.6.48.254, и только с NNTP-сервером сети, 123.4.5.9, а протокол NTP(сетевого времени) разрешен для всех хостов. Все другие сервисы и пакеты блокируются. Пример набора правил приведен ниже:

    Тип Адрес отправителя Адрес получателя Порт источника Порт получателя Действие

    tcp

    *

    123.4.5.6

    >1023

    23

    разрешить

    tcp

    *

    123.4.5.7

    >1023

    25

    разрешить

    tcp

    *

    123.4.5.8

    >1023

    25

    разрешить

    tcp

    129.6.48.254

    123.4.5.9

    >1023

    119

    разрешить

    udp

    *

    123.4.*.*

    >1023

    123

    разрешить

    *

    *

    *

    *

    *

    запретить

    Первое правило позволяет пропускать пакеты TCP из Интернета от любого источника, имеющие порт отправителя больше чем 1023, к адресу 123.4.5.6, если соединение устанавливается с портом 23. Порт 23 - это порт, связанный с сервером TELNETa, а все клиенты TELNETа должны использовать непривилегированные порты больше, чем 1024. Второе и третье правило работают аналогично, кроме того, что разрешаются адреса назначения 123.4.5.7 и 123.4.5.8 и порт 25 - SMTP. Четвертое правило пропускает пакеты к NNTP-серверу сети, но только от адреса 129.6.48.254 к адресу 123.4.5.9 с портом назначения 119( 129.6.48.254 - единственный NNTP-сервер, от которого сеть получает новости, поэтому доступ к сети в отношении NNTP ограничен только этой системой). Пятое правило разрешает траффик NTP, который использует UDP, а не TCP, от любого источника к любой системе в сети. Наконец, шестое правило блокирует все остальные пакеты - если этого правила не было бы, маршрутизатор мог блокировать, а мог и не блокировать другие тиы пакетов. Это очень простой пример фильтрации пакетов. Настоящие правила позволяют осуществить более сложную фильтрацию и являются более гибкими.

    Какие протоколы фильтровать

    Решение о том, какие протоколы или группы портов фильтровать, зависит от политики сетевого доступа, то есть от того, какие системы должны иметь доступ к Интернету и какие типы доступа разрешены. Описанные ниже сервисы потенциально уязвимы к атакам и обычно блокируются на брандмауэре при входе в сеть или выходе из нее[Chap92],[Garf92].