my dreams stopped
(which it has for the most part; it's happened just a few times since). I'm
dreaming one night as usual, making observations, and I see on the wall in
front of me a pennant. I answer for the twenty-fifth time, "Yes, I'm
dreaming in color," and then I realize that I've been sleeping with the back
of my head against a brass rod. I put my hand behind my head and I feel that
the back of my head is soft. I think, "Aha! That's why I've been able to
make all these observations in my dreams: the brass rod has disturbed my
visual cortex. All I have to do is sleep with a brass rod under my head, and
I can make these observations any time I want. So I think I'll stop making
observations on this one, and go into deeper sleep."
When I woke up later, there was no brass rod, nor was the back of my
head soft. Somehow I had become tired of making these observations, and my
brain had invented some false reasons as to why I shouldn't do it any more.
As a result of these observations I began to get a little theory. One
of the reasons that I liked to look at dreams was that I was curious as to
how you can see an image, of a person, for example, when your eyes are
closed, and nothing's coming in. You say it might be random, irregular nerve
discharges, but you can't get the nerves to discharge in exactly the same
delicate patterns when you are sleeping as when you are awake, looking at
something. Well then, how could I "see" in color, and in better detail, when
I was asleep?
I decided there must be an "interpretation department." When you are
actually looking at something -- a man, a lamp, or a wall -- you don't just
see blotches of color. Something tells you what it is; it has to be
interpreted. When you're dreaming, this interpretation department is still
operating, but it's all slopped up. It's telling you that you're seeing a
human hair in the greatest detail, when it isn't true. It's interpreting the
random junk entering the brain as a clear image.
One other thing about dreams. I had a friend named Deutsch, whose wife
was from a family of psychoanalysts in Vienna. One evening, during a long
discussion about dreams, he told me that dreams have significance: there are
symbols in dreams that can be interpreted psychoanalytically. I didn't
believe most of this stuff, but that night I had an interesting dream: We're
playing a game on a billiard table with three balls -- a white ball, a green
ball, and a gray ball -- and the name of the game is "titsies." There was
something about trying to get the balls into the pocket: the white ball and
the green ball are easy to sink into the pocket, but the gray one, I can't
get to it.
I wake up, and the dream is very easy to interpret: the name of the
game gives it away, of course -- them's girls! The white ball was easy to
figure out, because I was going out, sneakily, with a married woman who
worked at the time as a cashier in a cafeteria and wore a white uniform. The
green one was also easy, because I had gone out about two nights before to a
drive-in movie with a girl in a green dress. But the gray one -- what the
hell was the gray one? I knew it had to be somebody; I felt it. It's like
when you're trying to remember a name, and it's on the tip of your tongue,
but you can't get it.
It took me half a day before I remembered that I had said goodbye to a
girl I liked very much, who had gone to Italy about two or three months
before. She was a very nice girl, and I had decided that when she came back
I was going to see her again. I don't know if she wore a gray suit, but it
was perfectly clear, as soon as I thought of her, that she was the gray one.
I went back to my friend Deutsch, and I told him he must be right --
there is something to analyzing dreams. But when he heard about my
interesting dream, he said, "No, that one was too perfect -- too cut and
dried. Usually you have to do a bit more analysis."
--------
The Chief Research Chemist of the Metaplast Corporation
After I finished at MIT I wanted to get a summer job. I had applied two
or three times to the Bell Labs, and had gone out a few times to visit. Bill
Shockley, who knew me from the lab at MIT, would show me around each time,
and I enjoyed those visits terrifically, but I never got a job there.
I had letters from some of my professors to two specific companies. One
was to the Bausch and Lomb Company for tracing rays through lenses; the
other was to Electrical Testing Labs in New York. At that time nobody knew
what a physicist even was, and there weren't any positions in industry for
physicists. Engineers, OK; but physicists -- nobody knew how to use them.
It's interesting that very soon, after the war, it was the exact opposite:
people wanted physicists everywhere. So I wasn't getting anywhere as a
physicist looking for a job late in the Depression.
About that time I met an old friend of mine on the beach at our home
town of Far Rockaway, where we grew up together. We had gone to school
together when we were about eleven or twelve, and were very good friends. We
were both scientifically minded. He had a "laboratory," and I had a
"laboratory." We often played together, and discussed things together.
We used to put on magic shows -- chemistry magic -- for the kids on the
block. My friend was a pretty good showman, and I kind of liked that too. We
did our tricks on a little table, with Bunsen burners at each end going all
the time. On the burners we had watch glass plates (flat glass discs) with
iodine on them, which made a beautiful purple vapor that went up on each
side of the table while the show went on. It was great! We did a lot of
tricks, such as turning "wine" into water, and other chemical color changes.
For our finale, we did a trick that used something which we had discovered.
I would put my hands (secretly) first into a sink of water, and then into
benzine. Then I would "accidentally" brush by one of the Bunsen burners, and
one hand would light up. I'd clap my hands, and both hands would then be
burning. (It doesn't hurt because it burns fast and the water keeps it
cool.) Then I'd wave my hands, running around yelling, "FIRE! FIRE!" and
everybody would get all excited. They'd run out of the room, and that was
the end of the show!
Later on I told this story at college to my fraternity brothers and
they said, "Nonsense! You can't do that!"
(I often had this problem of demonstrating to these fellas something
that they didn't believe -- like the time we got into an argument as to
whether urine just ran out of you by gravity, and I had to demonstrate that
that wasn't the case by showing them that you can pee standing on your head.
Or the time when somebody claimed that if you took aspirin and Coca-Cola
you'd fall over in a dead faint directly. I told them I thought it was a lot
of baloney, and offered to take aspirin and Coca-Cola together. Then they
got into an argument whether you should have the aspirin before the Coke,
just after the Coke, or mixed in the Coke. So I had six aspirin and three
Cokes, one right after the other. First, I took aspirins and then a Coke,
then we dissolved two aspirins in a Coke and I took that, and then I took a
Coke and two aspirins. Each time the idiots who believed it were standing
around me, waiting to catch me when I fainted. But nothing happened. I do
remember that I didn't sleep very well that night, so I got up and did a lot
of figuring, and worked out some of the formulas for what is called the
Riemann-Zeta function.)
"All right, guys," I said. "Let's go out and get some benzine."
They got the benzine ready, I stuck my hand in the water in the sink
and then into the benzine and lit it... and it hurt like hell! You see, in
the meantime I had grown hairs on the back of my hand, which acted like
wicks and held the benzine in place while it burned, whereas when I had done
it earlier I had no hairs on the back of my hand. After I did the experiment
for my fraternity brothers, I didn't have any hairs on the back of my hands
either.
Well, my pal and I met on the beach, and he told me that he had a
process for metal-plating plastics. I said that was impossible, because
there's no conductivity; you can't attach a wire. But he said he could
metal-plate anything, and I still remember him picking up a peach pit that
was in the sand, and saying he could metal-plate that -- trying to impress
me.
What was nice was that he offered me a job at his little company, which
was on the top floor of a building in New York. There were only about four
people in the company. His father was the one who was getting the money
together and was, I think, the "president." He was the "vice-president,"
along with another fella who was a salesman. I was the "chief research
chemist," and my friend's brother, who was not very clever, was the
bottle-washer. We had six metal-plating baths.
They had this process for metal-plating plastics, and the scheme was:
First, deposit silver on the object by precipitating silver from a silver
nitrate bath with a reducing agent (like you make mirrors); then stick the
object, with silver on it as a conductor, into an electroplating bath, and
the silver gets plated.
The problem was, does the silver stick to the object?
It doesn't. It peels off easily. So there was a step in between, to
make the silver stick better to the object. It depended on the material. For
things like Bakelite, which was an important plastic in those days, my
friend had found that if he sandblasted it first, and then soaked it for
many hours in stannous hydroxide, which got into the pores of the Bakelite,
the silver would hold onto the surface very nicely.
But it worked only on a few plastics, and new kinds of plastics were
coming out all the time, such as methylmethacrylate (which we call
plexiglass, now), that we couldn't plate, directly, at first. And cellulose
acetate, which was very cheap, was another one we couldn't plate at first,
though we finally discovered that putting it in sodium hydroxide for a
little while before using the stannous chloride made it plate very well.
I was pretty successful as a "chemist" in the company. My advantage was
that my pal had done no chemistry at all; he had done no experiments; he
just knew how to do something once. I set to work putting lots of different
knobs in bottles, and putting all kinds of chemicals in. By trying
everything and keeping track of everything I found ways of plating a wider
range of plastics than he had done before.
I was also able to simplify his process. From looking in books I
changed the reducing agent from glucose to formaldehyde, and was able to
recover 100 percent of the silver immediately, instead of having to recover
the silver left in solution at a later time.
I also got the stannous hydroxide to dissolve in water by adding a
little bit of hydrochloric acid -- something I remembered from a college
chemistry course -- so a step that used to take hours now took about five
minutes.
My experiments were always being interrupted by the salesman, who would
come back with some plastic from a prospective customer. I'd have all these
bottles lined up, with everything marked, when all of a sudden, "You gotta
stop the experiment to do a 'super job' for the sales department!" So, a lot
of experiments had to be started more than once.
One time we got into one hell of a lot of trouble. There was some
artist who was trying to make a picture for the cover of a magazine about
automobiles. He had very carefully built a wheel out of plastic, and somehow
or other this salesman had told him we could plate anything, so the artist
wanted us to metal-plate the hub, so it would be a shiny, silver hub. The
wheel was made of a new plastic that we didn't know very well how to plate
-- the fact is, the salesman never knew what we could plate, so he was
always promising things -- and it didn't work the first time. So, to fix it
up we had to get the old silver off, and we couldn't get it off easily. I
decided to use concentrated nitric acid on it, which took the silver off all
right, but also made pits and holes in the plastic. We were really in hot
water that time! In fact, we had lots of "hot water" experiments.
The other fellas in the company decided we should run advertisements in
Modern Plastics magazine. A few things we metal-plated were very pretty.
They looked good in the advertisements. We also had a few things out in a
showcase in front, for prospective customers to look at, but nobody could
pick up the things in the advertisements or in the showcase to see how well
the plating stayed on. Perhaps some of them were, in fact, pretty good jobs.
But they were made specially; they were not regular products.
Right after I left the company at the end of the summer to go to
Princeton, they got a good offer from somebody who wanted to metal-plate
plastic pens. Now people could have silver pens that were light, and easy,
and cheap. The pens immediately sold, all over, and it was rather exciting
to see people walking around everywhere with these pens -- and you knew
where they came from.
But the company hadn't had much experience with the material -- or
perhaps with the filler that was used in the plastic (most plastics aren't
pure; they have a "filler," which in those days wasn't very well controlled)
-- and the darn things would develop a blister. When you have something in
your hand that has a little blister that starts to peel, you can't help
fiddling with it. So everybody was fiddling with all the peelings coming off
the pens.
Now the company had this emergency problem to fix the pens, and my pal
decided he needed a big microscope, and so on. He didn't know what he was
going to look at, or why, and it cost his company a lot of money for this
fake research. The result was, they had trouble: They never solved the
problem, and the company failed, because their first big job was such a
failure.
A few years later I was in Los Alamos, where there was a man named
Frederic de Hoffman, who was a sort of scientist; but more, he was also very
good at administrating. Not highly trained, he liked mathematics, and worked
very hard; he compensated for his lack of training by hard work. Later he
became the president or vice president of General Atomics and he was a big
industrial character after that. But at the time he was just a very
energetic, open-eyed, enthusiastic boy, helping along with the Project as
best he could.
One day we were eating at the Fuller Lodge, and he told me he had been
working in England before coming to Los Alamos.
"What kind of work were you doing there?" I asked.
"I was working on a process for metal-plating plastics. I was one of
the guys in the laboratory."
"How did it go?"
"It was going along pretty well, but we had our problems."
"Oh?"
"Just as we were beginning to develop our process, there was a company
in New York..."
"What company in New York?"
"It was called the Metaplast Corporation. They were developing further
than we were."
"How could you tell?"
"They were advertising all the time in Modern Plastics with full-page
advertisements showing all the things they could plate, and we realized that
they were further along than we were."
"Did you have any stuff from them?"
"No, but you could tell from the advertisements that they were way
ahead of what we could do. Our process was pretty good, but it was no use
trying to compete with an American process like that."
"How many chemists did you have working in the lab?"
"We had six chemists working."
"How many chemists do you think the Metaplast Corporation had?"
"Oh! They must have had a real chemistry department!"
"Would you describe for me what you think the chief research chemist at
the Metaplast Corporation might look like, and how his laboratory might
work?"
"I would guess they must have twenty-five or fifty chemists, and the
chief research chemist has his own office -- special, with glass. You know,
like they have in the movies -- guys coming in all the time with research
projects that they're doing, getting his advice, and rushing off to do more
research, people coming in and out all the time. With twenty-five or fifty
chemists, how the hell could we compete with them?"
"You'll be interested and amused to know that you are now talking to
the chief research chemist of the Metaplast Corporation, whose staff
consisted of one bottle-washer!"
--------
Part 2
The Princeton Years
--------
"Surely You're Joking, Mr. Feynman!"
When I was an undergraduate at MIT I loved it. I thought it was a great
place, and I wanted to go to graduate school there too, of course. But when
I went to Professor Slater and told him of my intentions, he said, "We won't
let you in here."
I said, "What?"
Slater said, "Why do you think you should go to graduate school at
MIT?"
"Because MIT is the best school for science in the country."
"You think that?"
"Yeah."
"That's why you should go to some other school. You should find out how
the rest of the world is."
So I decided to go to Princeton. Now Princeton had a certain aspect of
elegance. It was an imitation of an English school, partly. So the guys in
the fraternity, who knew my rather rough, informal manners, started making
remarks like "Wait till they find out who they've got coming to Princeton!
Wait till they see the mistake they made!" So I decided to try to be nice
when I got to Princeton.
My father took me to Princeton in his car, and I got my room, and he
left. I hadn't been there an hour when I was met by a man: "I'm the Mahstah
of Residences heah, and I should like to tell you that the Dean is having a
Tea this aftanoon, and he should like to have all of you come. Perhaps you
would be so kind as to inform your roommate, Mr. Serette."
That was my introduction to the graduate "College" at Princeton, where
all the students lived. It was like an imitation Oxford or Cambridge --
complete with accents (the master of residences was a professor of "French
littrachaw"). There was a porter downstairs, everybody had nice rooms, and
we ate all our meals together, wearing academic gowns, in a great hall which
had stained-glass windows.
So the very afternoon I arrived in Princeton I'm going to the dean's
tea, and I didn't even know what a "tea" was, or why! I had no social
abilities whatsoever; I had no experience with this sort of thing.
So I come up to the door, and there's Dean Eisenhart, greeting the new
students: "Oh, you're Mr. Feynman," he says. "We're glad to have you." So
that helped a little, because he recognized me, somehow.
I go through the door, and there are some ladies, and some girls, too.
It's all very formal and I'm thinking about where to sit down and should I
sit next to this girl, or not, and how should I behave, when I hear a voice
behind me.
"Would you like cream or lemon in your tea, Mr. Feynman?" It's Mrs.
Eisenhart, pouring tea.
"I'll have both, thank you," I say, still looking for where I'm going
to sit, when suddenly I hear "Heh-heh-heh-heh-heh. Surely you're joking, Mr.
Feynman."
Joking? Joking? What the hell did I just say? Then I realized what I
had done. So that was my first experience with this tea business.
Later on, after I had been at Princeton longer, I got to understand
this "Heh-heh-heh-heh-heh." In fact it was at that first tea, as I was
leaving, that I realized it meant "You're making a social error." Because
the next time I heard this same cackle, "Heh-heh-heh-heh-heh," from Mrs.
Eisenhart, somebody was kissing her hand as he left.
Another time, perhaps a year later, at another tea, I was talking to
Professor Wildt, an astronomer who had worked out some theory about the
clouds on Venus. They were supposed to be formaldehyde (it's wonderful to
know what we once worried about) and he had it all figured out, how the
formaldehyde was precipitating, and so on. It was extremely interesting. We
were talking about all this stuff, when a little lady came up and said, "Mr.
Feynman, Mrs. Eisenhart would like to see you."
"OK, just a minute..." and I kept talking to Wildt.
The little lady came back again and said, "Mr. Feynman, Mrs. Eisenhart
would like to see you."
"OK, OK!" and I go over to Mrs. Eisenhart, who's pouring tea.
"Would you like to have some coffee or tea, Mr. Feynman?"
"Mrs. So-and-so says you wanted to talk to me."
"Heh-heh-heh-heh-heh. Would you like to have coffee, or tea, Mr.
Feynman?"
"Tea," I said, "thank you."
A few moments later Mrs. Eisenhart's daughter and a schoolmate came
over, and we were introduced to each other. The whole idea of this
"heh-heh-heh" was: Mrs. Eisenhart didn't want to talk to me, she wanted me
over there getting tea when her daughter and friend came over, so they would
have someone to talk to. That's the way it worked. By that time I knew what
to do when I heard "Heh-heh-heh-heh-heh." I didn't say, "What do you mean,
'Heh-heh-heh-heh-heh'?"; I knew the "heh-heh-heh" meant "error," and I'd
better get it straightened out.
Every night we wore academic gowns to dinner. The first night it scared
the life out of me, because I didn't like formality. But I soon realized
that the gowns were a great advantage. Guys who were out playing tennis
could rush into their room, grab their academic gown, and put it on. They
didn't have to take time off to change their clothes or take a shower. So
underneath the gowns there were bare arms, T-shirts, everything.
Furthermore, there was a rule that you never cleaned the gown, so you could
tell a first-year man from a second-year man, from a third-year man, from a
pig! You never cleaned the gown and you never repaired it, so the first-year
men had very nice, relatively clean gowns, but by the time you got to the
third year or so, it was nothing but some kind of cardboard thing on your
shoulders with tatters hanging down from it.
So when I got to Princeton, I went to that tea on Sunday afternoon and
had dinner that evening in an academic gown at the "College." But on Monday,
the first thing I wanted to do was to see the cyclotron.
MIT had built a new cyclotron while I was a student there, and it was
just beautiful! The cyclotron itself was in one room, with the controls in
another room. It was beautifully engineered. The wires ran from the control
room to the cyclotron underneath in conduits, and there was a whole console
of buttons and meters. It was what I would call a gold-plated cyclotron.
Now I had read a lot of papers on cyclotron experiments, and there
weren't many from MIT. Maybe they were just starting. But there were lots of
results from places like Cornell, and Berkeley, and above all, Princeton.
Therefore what I really wanted to see, what I was looking forward to, was
the PRINCETON CYCLOTRON. That must be something.
So first thing on Monday, I go into the physics building and ask,
"Where is the cyclotron -- which building?"
"It's downstairs, in the basement -- at the end of the hall."
In the basement? It was an old building. There was no room in the
basement for a cyclotron. I walked down to the end of the hall, went through
the door, and in ten seconds I learned why Princeton was right for me -- the
best place for me to go to school. In this room there were wires strung all
over the place! Switches were hanging from the wires, cooling water was
dripping from the valves, the room was full of stuff, all out in the open.
Tables piled with tools were everywhere; it was the most godawful mess you
ever saw. The whole cyclotron was there in one room, and it was complete,
absolute chaos!
It reminded me of my lab at home. Nothing at MIT had ever reminded me
of my lab at home. I suddenly realized why Princeton was getting results.
They were working with the instrument. They built the instrument; they knew
where everything was, they knew how everything worked, there was no engineer
involved, except maybe he was working there too. It was much smaller than
the cyclotron at MIT, and "gold-plated"? -- it was the exact opposite. When
they wanted to fix a vacuum, they'd drip glyptal on it, so there were drops
of glyptal on the floor. It was wonderful! Because they worked with it. They
didn't have to sit in another room and push buttons! (Incidentally, they had
a fire in that room, because of all the chaotic mess that they had -- too
many wires -- and it destroyed the cyclotron. But I'd better not tell about
that!)
(When I got to Cornell I went to look at the cyclotron there. This
cyclotron hardly required a room: It was about a yard across -- the diameter
of the whole thing. It was the world's smallest cyclotron, but they had got
fantastic results. They had all kinds of special techniques and tricks. If
they wanted to change something in the "D's" -- the D-shaped half circles
that the particles go around -- they'd take a screwdriver, and remove the
D's by hand, fix them, and put them back. At Princeton it was a lot harder,
and at MIT you had to take a crane that came rolling across the ceiling,
lower the hooks, and it was a hellllll of a job.)
I learned a lot of different things from different schools. MIT is a
very good place; I'm not trying to put it down. I was just in love with it.
It has developed for itself a spirit, so that every member of the whole
place thinks that it's the most wonderful place in the world -- it's the
center, somehow, of scientific and technological development in the United
States, if not the world. It's like a New Yorker's view of New York: they
forget the rest of the country. And while you don't get a good sense of
proportion there, you do get an excellent sense of being with it and in it,
and having motivation and desire to keep on -- that you're specially chosen,
and lucky to be there.
So MIT was good, but Slater was right to warn me to go to another
school for my graduate work. And I often advise my students the same way.
Learn what the rest of the world is like. The variety is worthwhile.
I once did an experiment in the cyclotron laboratory at Princeton that
had some startling results. There was a problem in a hydrodynamics book that
was being discussed by all the physics students. The problem is this: You
have an S-shaped lawn sprinkler -- an S-shaped pipe on a pivot -- and the
water squirts out at right angles to the axis and makes it spin in a certain
direction. Everybody knows which way it goes around; it backs away from the
outgoing water. Now the question is this: If you had a lake, or swimming
pool -- a big supply of water -- and you put the sprinkler completely under
water, and sucked the water in, instead of squirting it out, which way would
it turn? Would it turn the same way as it does when you squirt water out
into the air, or would it turn the other way?
The answer is perfectly clear at first sight. The trouble was, some guy
would think it was perfectly clear one way, and another guy would think it
was perfectly clear the other way. So everybody was discussing it. I
remember at one particular seminar, or tea, somebody went up to Prof. John
Wheeler and said, "Which way do you think it goes around?"
Wheeler said, "Yesterday, Feynman convinced me that it went backwards.
Today, he's convinced me equally well that it goes around the other way. I
don't know what he'll convince me of tomorrow!"
I'll tell you an argument that will make you think it's one way, and
another argument that will make you think it's the other way, OK?
One argument is that when you're sucking water in, you're sort of
pulling the water with the nozzle, so it will go forward, towards the
incoming water.
But then another guy comes along and says, "Suppose we hold it still
and ask what kind of a torque we need to hold it still. In the case of the
water going out, we all know you have to hold it on the outside of the
curve, because of the centrifugal force of the water going around the curve.
Now, when the water goes around the same curve the other way, it still makes
the same centrifugal force toward the outside of the curve. Therefore the
two cases are the same, and the sprinkler will go around the same way,
whether you're squirting water out or sucking it in."
After some thought, I finally made up my mind what the answer was, and
in order to demonstrate it, I wanted to do an experiment.
In the Princeton cyclotron lab they had a big carboy -- a monster
bottle of water. I thought this was just great for the experiment. I got a
piece of copper tubing and bent it into an S-shape. Then in the middle I
drilled a hole, stuck in a piece of rubber hose, and led it up through a
hole in a cork I had put in the top of the bottle. The cork had another
hole, into which I put another piece of rubber hose, and connected it to the
air pressure supply of the lab. By blowing air into the bottle, I could
force water into the copper tubing exactly as if I were sucking it in. Now,
the S-shaped tubing wouldn't turn around, but it would twist (because of the
flexible rubber hose), and I was going to measure the speed of the water
flow by measuring how far it squirted out of the top of the bottle.
I got it all set up, turned on the air supply, and it went "Puup!" The
air pressure blew the cork out of the bottle. I wired it in very well, so it
wouldn't jump out. Now the experiment was going pretty good. The water was
coming out, and the hose was twisting, so I put a little more pressure on
it, because with a higher speed, the measurements would be more accurate. I
measured the angle very carefully, and measured the distance, and increased
the pressure again, and suddenly the whole thing just blew glass and water
in all directions throughout the laboratory. A guy who had come to watch got
all wet and had to go home and change his clothes (it's a miracle he didn't
get cut by the glass), and lots of cloud chamber pictures that had been
taken patiently using the cyclotron were all wet, but for some reason I was
far enough away, or in some such position that I didn't get very wet. But
I'll always remember how the great Professor Del Sasso, who was in charge of
the cyclotron, came over to me and said sternly, "The freshman experiments
should be done in the freshman laboratory!"
--------
Meeeeeeeeeee!
On Wednesdays at the Princeton Graduate College, various people would
come in to give talks. The speakers were often interesting, and in the
discussions after the talks we used to have a lot of fun. For instance, one
guy in our school was very strongly anti-Catholic, so he passed out
questions in advance for people to ask a religious speaker, and we gave the
speaker a hard time.
Another time somebody gave a talk about poetry. He talked about the
structure of the poem and the emotions that come with it; he divided
everything up into certain kinds of classes. In the discussion that came
afterwards, he said, "Isn't that the same as in mathematics, Dr. Eisenhart?"
Dr. Eisenhart was the dean of the graduate school and a great professor
of mathematics. He was also very clever. He said, "I'd like to know what
Dick Feynman thinks about it in reference to theoretical physics." He was
always putting me on in this kind of situation.
I got up and said, "Yes, it's very closely related. In theoretical
physics, the analog of the word is the mathematical formula, the analog of
the structure of the poem is the interrelationship of the theoretical
bling-bling with the so-and-so" -- and I went through the whole thing,
making a perfect analogy. The speaker's eyes were beaming with happiness.
Then I said, "It seems to me that no matter what you say about poetry,
I could find a way of making up an analog with any subject, just as I did
for theoretical physics. I don't consider such analogs meaningful."
In the great big dining hall with stained-glass windows, where we
always ate, in our steadily deteriorating academic gowns, Dean Eisenhart
would begin each dinner by saying grace in Latin. After dinner he would
often get up and make some announcements. One night Dr. Eisenhart got up and
said, "Two weeks from now, a professor of psychology is coming to give a
talk about hypnosis. Now, this professor thought it would be much better if
we had a real demonstration of hypnosis instead of just talking about it.
Therefore he would like some people to volunteer to be hypnotized..."
I get all excited: There's no question but that I've got to find out
about hypnosis. This is going to be terrific!
Dean Eisenhart went on to say that it would be good if three or four
people would volunteer so that the hypnotist could try them out first to see
which ones would be able to be hypnotized, so he'd like to urge very much
that we apply for this. (He's wasting all this time, for God's sake!)
Eisenhart was down at one end of the hall, and I was way down at the
other end, in the back. There were hundreds of guys there. I knew that
everybody was going to want to do this, and I was terrified that he wouldn't
see me because I was so far back. I just had to get in on this
demonstration!
Finally Eisenhart said, "And so I would like to ask if there are going
to be any volunteers..."
I raised my hand and shot out of my seat, screaming as loud as I could,
to make sure that he would hear me: "MEEEEEEEEEEE!"
He heard me all right, because there wasn't another soul. My voice
reverberated throughout the hall -- it was very embarrassing. Eisenhart's
immediate reaction was, "Yes, of course, I knew you would volunteer, Mr.
Feynman, but I was wondering if there would be anybody else."
Finally a few other guys volunteered, and a week before the
demonstration the man came to practice on us, to see if any of us would be
good for hypnosis. I knew about the phenomenon, but I didn't know what it
was like to be hypnotized.
He started to work on me and soon I got into a position where he said,
"You can't open your eyes."
I said to myself, "I bet I could open my eyes, but I don't want to
disturb the situation: Let's see how much further it goes." It was an
interesting situation: You're only slightly fogged out, and although you've
lost a little bit, you're pretty sure you could open your eyes. But of
course, you're not opening your eyes, so in a sense you can't do it.
He went through a lot of stuff and decided that I was pretty good.
When the real demonstration came he had us walk on stage, and he
hypnotized us in front of the whole Princeton Graduate College. This time
the effect was stronger; I guess I had learned how to become hypnotized. The
hypnotist made various demonstrations, having me do things that I couldn't
normally do, and at the end he said that after I came out of hypnosis,
instead of returning to my seat directly, which was the natural way to go, I
would walk all the way around the room and go to my seat from the back.
All through the demonstration I was vaguely aware of what was going on,
and cooperating with the things the hypnotist said, but this time I decided,
"Damn it, enough is enough! I'm gonna go straight to my seat."
When it was time to get up and go off the stage, I started to walk
straight to my seat. But then an annoying feeling came over me: I felt so
uncomfortable that I couldn't continue. I walked all the way around the
hall.
I was hypnotized in another situation some time later by a woman. While
I was hypnotized she said, "I'm going to light a match, blow it out, and
immediately touch the back of your hand with it. You will feel no pain."
I thought, "Baloney!" She took a match, lit it, blew it out, and
touched it to the back of my hand. It felt slightly warm. My eyes were
closed throughout all of this, but I was thinking, "That's easy. She lit one
match, but touched a different match to my hand. There's nothin' to that;
it's a fake!"
When I came out of the hypnosis and looked at the back of my hand, I
got the biggest surprise: There was a burn on the back of my hand. Soon a
blister grew, and it never hurt at all, even when it broke.
So I found hypnosis to be a very interesting experience. All the time
you're saying to yourself, "I could do that, but I won't" -- which is just
another way of saying that you can't.
--------
A Map of the Cat?
In the Graduate College dining room at Princeton everybody used to sit
with his own group. I sat with the physicists, but after a bit I thought: It
would be nice to see what the rest of the world is doing, so I'll sit for a
week or two in each of the other groups.
When I sat with the philosophers I listened to them discuss very
seriously a book called Process and Reality by Whitehead. They were using
words in a funny way, and I couldn't quite understand what they were saying.
Now I didn't want to interrupt them in their own conversation and keep
asking them to explain something, and on the few occasions that I did,
they'd try to explain it to me, but I still didn't get it. Finally they
invited me to come to their seminar.
They had a seminar that was like a class. It had been meeting once a
week to discuss a new chapter out of Process and Reality -- some guy would
give a report on it and then there would be a discussion. I went to this
seminar promising myself to keep my mouth shut, reminding myself that I
didn't know anything about the subject, and I was going there just to watch.
What happened there was typical -- so typical that it was unbelievable,
but true. First of all, I sat there without saying anything, which is almost
unbelievable, but also true. A student gave a report on the chapter to be
studied that week. In it Whitehead kept using the words "essential object"
in a particular technical way that presumably he had defined, but that I
didn't understand.
After some discussion as to what "essential object" meant, the
professor leading the seminar said something meant to clarify things and
drew something that looked like lightning bolts on the blackboard. "Mr.
Feynman," he said, "would you say an electron is an 'essential object'?"
Well, now I was in trouble. I admitted that I hadn't read the book, so
I had no idea of what Whitehead meant by the phrase; I had only come to
watch. "But," I said, "I'll try to answer the professor's question if you
will first answer a question from me, so I can have a better idea of what
'essential object' means. Is a brick an essential object?"
What I had intended to do was to find out whether they thought
theoretical constructs were essential objects. The electron is a theory that
we use; it is so useful in understanding the way nature works that we can
almost call it real. I wanted to make the idea of a theory clear by analogy.
In the case of the brick, my next question was going to be, "What about the
inside of the brick?" -- and I would then point out that no one has ever
seen the inside of a brick. Every time you