\input style \chapnotrue\chapno=5\subchno=1\subsubchno=3 񎏎 : $$ \pmatrix{ 1 & \ldots & 1 & 2 & \ldots & 2 & \ldots & m & \ldots & m \cr x'_{11} & \ldots & x'_{1p} & x'_{m1} & \ldots & x'_{mp} & \ldots & x'_{21} & \ldots & x'_{2p} \cr }, \eqno(33) $$ ~$x'=m+1-x$. 呋 ~(32) $k$~ ~$y \atop x$, , ~$x1$, ~$xa_{i+1}$, , ~$a_i \ne a_{i+1}$, , ~$a_i=a_{i+1}=x_j$ $N n_j(n_j-1)/n(n-1)$~, ~$N$--- . 񋅄, $a_i=a_{i+1}$ $$ {N\over n(n-1)}(n_1(n_1-1)+\cdots+n_m(n_m-1))={N\over n(n-1)}(n_1^2+\cdots+n_m^2-n) $$ , a~$a_i>a_{i+1}$ $$ {N\over 2n(n-1)}(n^2-(n_1^2+\cdots+n_m^2)) $$ . 񓌌 ~$i$ ~$N$, ~$a_n$, ~$N$ : $$ N\left({n\over2}-{1\over 2n}(n_1^2+\cdots+n_m^2)+1\right). \eqno(34) $$  ~$N$, . %%62 " ", , , , . 䎏 .~.~䝂 ~.~.~တ Combinatorial Chance (London: Griffin, 1962), .~10, .~.~တ ~.~.~읋 [{\sl Annals of Math. Statistics,\/} {\bf 36} (1965), 236--260]. 䀋 .~􎀒 ~.~.~ Th\'eorie G\'eom\'etrique des Polyn\^omes Eul\'eriens (Lecture Notes in Math., 138 (Berlin: Springer, 1970), 94~.). \excercises \ex[26] ⛂ ~(13). \rex[22] ()~ , ~(8): ~$a_1\,a_2\, \ldots\,a_n$, ~$q$ , , $$ \sum_k \eul{n}{k} \perm{k-1}{n-q}=\Stir{n}{q}q!. $$ (b)~葏 , , $$ \sum_k \eul{n}{k}\perm{k}{m}=\Stir{n+1}{n+1-m}(n-m)! \rem{~$n\ge m$.} $$ \ex[25] ⛗ ~$\sum_k \eul{n}{k}(-1)^k$. \ex[21] $$ \sum_k (-1)^k\Stir{n}{k}k!\perm{n-k}{m}? $$ \ex[20] 퀉 ~$\eul{p}{k}\bmod p$, ~$p$--- . \rex[21] 숑 򓏈 , ~(4) ~(13) $$ n!=\sum_{k\ge0} \eul{n}{k}=\sum_{k\ge0}\sum_{j\ge0} (-1)^{k-j}\perm{n+1}{k-j}j^n. $$  ~$k$, ~$j$, , ~$\sum_{k\ge0} (-1)^{k-j}\perm{n+1}{k-j}=0$ ~$j\ge0$, ~$n!=0$ ~$n\ge0$. - ? \ex[40] ߂ , ~(14), ? (.~~.~1.2.10-13.) \ex[24] (.~.~쀊-쀃 ) , , ~$l_1$, %%63 ~$l_2$,~\dots, $k\hbox{- }\ge l_k$, $$ \det\pmatrix{ 1/l_1! & 1/(l_1+l_2)! & 1/(l_1+l_2+l_3)! & \ldots & 1/(l_1+l_2+l_3+\cdots+l_k)!\cr 1 & 1/l_2! & 1/(l_2+l_3)! & \ldots & 1/(l_2+l_3+\cdots+l_k)! \cr 0 & 1 & 1/l_3! & \ldots & 1/(l_3+\cdots+l_k)!\cr \vdots & & & & \vdots\cr 0 & 0 & \ldots & 1 & 1/l_k! \cr }. $$ \ex[M30] ~$h_k(z)=\sum p_{km} z^m$, ~$p_{km}$--- , $k$~ () ~$m$. 퀉 "" ~$h_1(z)$, $h_2(z)$ ~$h(z, x)=\sum_k h_k(z) x^k$ . \ex[BM30]  ~$h_k(z)$ ~$k$. \ex[40] ~$H_k(z)=\sum p_{km} z^m$, ~$p_{km}$--- , $k\hbox{-}$~ () ~$m$. ⛐~$H_1(z)$, $H_2(z)$ ~$H(z, x)=\sum_k H_k(z) x^k$ . \ex[M33] (..~쀊-쀃.)  ~(13) , , ~$\set{n_1\cdot 1, n_2\cdot 2,~\ldots, n_m\cdot m}$, $k$~, $$ \sum_{0\le j \le k} (-1)^i \perm{n+1}{j} \perm{n_1-1+k-j}{n_1} \perm{n_2-1+k-j}{n_2} \cdots \perm{n_m-1+k-j}{n_m}, $$ ~$n=n_1+n_2+\cdots+n_m$. \ex[05] ꀊ 휞, ( 52~), , , $$ \clubsuit < \diamondsuit < \heartsuit < \spadesuit? $$ \ex[M17] ~$3\,1\,1\,1\,2\,3\,1\,4\,2\,3\,3\,4\,2\,2\,4\,4$ $5$~; 쀊-쀃 $9\hbox{-}$~. \rex[21] \exhead( .) $19\hbox{-}$~ , , , "". , , ~$5\,3\,2\,4\,7\,6\,1\,8$ $4$~ $$ 5\,3\, 2, \quad 2\,4\,7,\quad 7\,6\,1,\quad 1\,8. $$ ( , $a_1a_2$; , ~$a_1\,a_2\ldots\, a_n$, $a_n\,\ldots\,a_2\,a_1$ ~$(n+1-a_1)\,(n+1-a_2)\ldots (n+1-a_n)$ .) 쀊 $n$~ ~$n-1$. 퀉 ~$\set{1, 2,~\ldots, n}$. [\emph{󊀇:} ~(34).] \ex[M30]  . ~$\Eul{n}{k}$--- %%64 ~$\set{1, 2,~\ldots, n}$, $k$~ . 퀉 , ~$\Eul{n}{k}$; ~$G_n(z)=\sum_k \Eul{n}{k} z^k \big / n!$. 葏 , \emph{} ~$\set{1,2, ~\ldots, n}$. \ex[M25] 񓙅 ~$2^n$ $a_1\,a_2\,a_n$, ~$a_j$---~$0$, ~$1$. 񊎋 , $k$~ (.~.~ ~$k-1$ ~$a_j$, , ~$a_j>a_{j+1}$)? \ex[M27] 񓙅 ~$n!$ ~$a_1\,a_2\,\ldots\,a_n$, ~$a_j$--- , ~$0 \le a_j \le n-j$; , $k$~ (.~.~ ~$k-1$ ~$a_j$, , ~$a_j>a_{j+1}$)? \rex[M26] (.~.) ()~񊎋 $n$~ (.~.~ \picture{ .~4. 텀 . } ) ~$n\times n$ , ~$k$ ? (b)~񊎋 $k$~ ~$n\times n$? 퀏, .~4 $15619$~ , $1050$~ . \rex[21] ㎂, $k$~\emph{,} $k$~, , . 퀏, $$ 4\,9\,1\,8\,2\,5\,3\,6\,7 $$ %%65 : ~$1,2,3$; ---$4, 5, 6, 7$; ~$8$; ~$9$. 퀉 . \ex[M22] 呋 ~$a_1\,a_2\,\ldots\,a_n$ ~$\set{1, 2, ~\ldots, n}$ $k$~ $j$~ .~20, ~$a_n\,\ldots\,a_2\,a_1$? \ex[M26] (.~ꀐ, .~.~ ~.~.~񊎓.) , ~$\set{1, 2,~\ldots, n}$ $n+1-r$~, $s$~, ~$rs1$, ~$t$ ~$1$ ~\stp{2}. \st[~$x$.] 󑒀~$x\asg x_1$ . (򅏅~$0 < x < \infty$.) \algend  ~I ~D, , , , , \emph{~I ~D .} 呋 ~I ~$P$ ~$x\notin P$, ~$x$ ~$P$ ~$s$, $t$, ~(8). ~D, , ~$x$ ~$P$. , ~D ~$P$ ~$s$, $t$, ~(8), ~$P$, ~$x$. ~I, , ~$s$, $t$ ~$P$. %% 70  , ~I3 ~D4 , ~I4 ~D3; ~$j$. 񋅄, ~(9), (10) , . 򅏅 . \proclaim 򅎐~A. 񓙅 ~$\set{1, 2,~\ldots, n}$ ~$(P, Q)$, ~$P$ ~$Q$--- ~$\set{1, 2,~\ldots, n}$. ( .) \proof 󄎁 . $$ \pmatrix{ q_1 & q_2 & \ldots & q_n \cr p_1 & p_2 & \ldots & p_n \cr },\qquad \matrix{q_1 < q_2 < \ldots < q_n,\hfill\cr p_1, p_2, \ldots, p_n \hbox{ },\hfill\cr } \eqno (11) $$ ~$P$ ~$Q$, $P$~ ~$\set{p_1, p_2,~\ldots, p_n}$, ~$Q$--- ~$\set{q_1, q_2,~\ldots, q_n}$, ~$P$ ~$Q$ . ~$P$ ~$Q$ . ~$i=1$, $2$,~\dots, $n$ ( ) : ~$P_i$ ~$P$ ~I; ~$Q_{st}\asg q_l$, ~$s$ ~$t$ ~$P$. 퀏, ~$ \pmatrix{ 1 & 3 & 5 & 6 & 8 \cr 7 & 2 & 9 & 5 & 3 \cr }$, : {\tdim=\hsize \advance\tdim by -\parindent \divide\tdim by 3 \def\+#1\cr{\line{\indent\vbox{\halign{\hbox to \tdim{##\hfil}&\hbox to \tdim{##\hfil}&\hbox to \tdim{##\hfil}\cr#1\cr}}\hfill}\smallskip} \vskip\abovedisplayskip \+ & $P$ \hfil & $Q$ \hfil \cr \+ ⑒~7: & \tableau{ 7 \cr } & \tableau{ 1 \cr }\cr \+ ⑒~2: & \tableau{ 2 \cr 7 \cr } & \tableau { 1 \cr 3 \cr } \cr \+ ⑒~9: & \tableau{ 2 & 9 \cr 7 \cr } & \tableau{ 1 & 5 \cr 3 \cr } \cr %% 71 \+ ⑒~5: & \tableau{ 2 & 5 \cr 7 & 9 \cr } & \tableau{ 1 & 5 \cr 3 & 6 \cr } \cr \rightline{(12)} \+ ⑒~3: & \tableau{ 2& 3 \cr 5 & 9 \cr 7\cr } & \tableau{ 1 & 5 \cr 3 & 6 \cr 8 \cr } \cr \vskip\belowdisplayskip } 񋅄, ~$(P, Q)$, $\pmatrix{ 1 & 3 & 5 & 6 & 8 \cr 7 & 2 & 9 & 5 & 3 \cr }$, : $$ P=\tableau{ 2 & 3 \cr 5 & 9 \cr 7 \cr }\,, \qquad Q=\tableau{ 1 & 5 \cr 3 & 6 \cr 8 \cr }\,. \eqno(13) $$ , ~$P$ ~$Q$ . ꐎ , ~$Q$ , ~$Q$---. , , ~(11) .  $$ q_1 < q_2 < \ldots < q_n $$% ---~$Q$.  ~$i=n$,~\dots, $2$, $1$ ( ) $p_i$---~$x$, ~$P$ ~D ~$s$, $t$, , ~$Q_{st}=q_i$. 퀏, ~(13) , ~(12), , ~$P$ , $\pmatrix{ 1 & 3 & 5 & 6 & 8 \cr 7 & 2 & 9 & 5 & 3 \cr }$.  ~I ~D , ; , . \proofend 񎎒, ~A, , . 󁅄 , , .~1, . %%72 ꀊ ~1 ~2, ~1; , ~2, 3,~\dots{} "" , ~1, 2,~\dots{} . , ~A , ~$P$ ~$Q$. 퀏, $\pmatrix{ 1 & 3 & 5 & 6 & 8\cr 7 & 2 & 9 & 5 & 3 \cr }$ ~1 [.~~(12)]: $$ \vcenter{\halign{ #\hfil\bskip&\bskip #\hfil\bskip&\bskip$#$\hfil\cr 1: ⑒~$7$, & & Q_{11}\asg 1. \cr 3: ⑒~$2$, & ~$7$. \cr 5: ⑒~$9$, & & Q_{12}\asg 5. \cr 6: ⑒~$5$, & ~$9$. \cr 8: ⑒~$3$, & ~$5$.\cr }} \eqno(14) $$ 򀊈 , ~$P$---~$2~3$, ~$Q$---~$1~5$. ꐎ , ~$P$ ~$Q$ , "" $$ \pmatrix{ 3 & 6 & 8 \cr 7 & 9 & 5 \cr }, \eqno (15) $$ , ~1, , . ᓄ , ~$(q_i, p_i)$ ~$t$ $$ \pmatrix{ q_1 & q_2 & \ldots & q_n \cr p_1 & p_2 & \ldots & p_n \cr }, \qquad\matrix{ q_1p_{i_2}>\ldots>p_{i_k},\cr } \eqno(18) $$ ~$P_{1t}$ ~$p_{i_1}$,~\dots, $p_{i_k}$. $$ p_{1t}=p_{i_k}, \quad Q_{1t}=q_{i_1}, \eqno(19) $$ , ~2, 3,~\dots{} ~$P$ ~$Q$, $$ \pmatrix{ q_{i_2} & q_{i_3} & \ldots & q_{i_k} \cr p_{i_1} & p_{i_2} & \ldots & p_{i_k-1}\cr }, \eqno(20) $$ , . ~$P$ ~$Q$ (.~.~3), . \proclaim 򅎐~B. 呋 ~A $$ \pmatrix{ 1 & 2 & \ldots & n \cr a_1 & a_2 & \ldots & a_n \cr } $$ ~$(P, Q)$, ~$(Q, P)$. , ~A ~$P$ ~$Q$ , . %% 74 \proof , ~(16); , , "" $$ \eqalign{ \pmatrix{ q_1 & q_2 & \ldots & q_n \cr p_1 & p_2 & \ldots & p_n \cr }^{-1}&= \pmatrix{ p_1 & p_2 & \ldots & p_n \cr q_1 & q_2 & \ldots & q_n \cr }=\cr &=\pmatrix{ p'_1 & p'_2 & \ldots & p'_n \cr q'_1 & q'_2 & \ldots & q'_n \cr },\qquad \matrix{ p'_1 < p'_2 < \ldots < p'_n; \hfill\cr q'_1, q'_2, \ldots, q'_n \hbox{ .}\hfill\cr }\cr } \eqno(21) $$ , ~$(P, Q)$ ~$(Q, P)$ ~A. .~2 , , ~$(q_i, p_i)$, , ~$q_1$, $q_2$,~\dots, $q_n$ .  ~$p$ ~$q$, ~(21) ; ~$(q, p)$ ~$t$ ~(16), ~$(p, q)$ ~$t$ ~(21). , ~$t$ , $$ \eqalign{ p_{i_k}<\ldots< p_{i_2} < p_{i_1}, \cr q_{i_k}>\ldots> q_{i_2} > q_{i_1}, \cr } \eqno(22) $$ [.~~(18)], $$ P_{1t}=q_{i_1}, Q_{1t}=p_{i_k}, \eqno (23) $$ ~(19), $$ \pmatrix{ p_{i_{k-1}} & \ldots & p_{i_2} & p_{i_1} \cr q_{i_k} & \ldots & q_{i_3} & q_{i_2} \cr } \eqno(24) $$ , ~(20). 񋅄, ~$P$ ~$Q$ . ꐎ , ~(21) ~(16), . \proofend \proclaim 񋅄. ꎋ , ~$\set{1, 2,~\ldots, n}$, ~$\set{1, 2,~\ldots, n}$. \proof 呋~$\pi$---, ~$(P, Q)$, ~$\pi=\pi^{-1}$ ~$(Q, P)$. 񋅄, %% 75 $P=Q$. , ~$\pi$---- , ~$(P, P)$, ~$\pi^{-1}$ ~$(P,P)$; ~$\pi=\pi^{-1}$. 򀊈 , ~$\pi$ ~$P$. \proofend ߑ, . . 񍀗 , ~I, . 瀒 , , ; ..  , , $$ \tableau{ 1 & 3 & 5 & 8 & 12 & 16\cr 2 & 6 & 9 & 15\cr 4 & 10 & 14 \cr 11 & 13 \cr 17\cr } \eqno (25) $$  ~$1$ ~$2$. 瀒 ~$4$ , ~$11$ ~$4$, ~$10$, ~$13$ ~$10$. . \alg S.(󄀋 .) ~$P$ , . 葏 , ~I ~D. \st[퀗 .] 󑒀~$r\asg 1$, $s\asg 1$. \st[ꎍ?] 呋~$P_{rs}=\infty$, . \st[񐀂.] 呋~$P_{(r+1)s}\simlt P_{r(s+1)}$, ~\stp{5}. (񐀂 .) \st[ .] 󑒀~$P_{rs}\asg P_{r(s+1)}$, $s\asg s+1$ ~\stp{3}. \st[ .] 󑒀~$P_{rs}\asg P_{(r+1)s}$, $r\asg r+1$ ~\stp{2}. \algend 녃 , ~S, $P$---- (.~.~10). 򀊈 %%76 , ~S , ~$P$ , . , , , . 숍 ~$n^{1.5}$; , , ~$n\log n$. ~S, , . \proclaim 򅎐~C. (.~.~.) 呋~$P$---, , ~A, ~$a_1\,a_2,\ldots\,a_n$, ~$a_i=\min\set{a_1, a_2, \ldots, a_n}$, ~S ~$P$ , ~$a_1\,\ldots\,a_{i-1}\,a_{i+1}\,\ldots\,a_n$. \proof . . 13. \proofend 䀂 ~S , , . , , ~(25), $$ \tableau{ 2 & 3 & 5 & 8 & 12 & 16\cr 4 & 6 & 9 & 15\cr 10 & 13 & 14 \cr 11 & (1) \cr 17 \cr } $$ $$ \tableau{ 4 & 5 & 8 & 12 & 16 & (2)\cr 6 & 9 & 14 &15\cr 10 & 13 & (3) \cr 11 & (1) \cr 17\cr } $$ %% 77  , , , $$ \tableau{ 17 & 15 & 14 & 13 & 11 & 2 \cr 16 & 10 & 6 & 4 \cr 12 & 5 & 3 \cr 9 & 1 \cr 8 \cr } \eqno(26) $$ , ~(25). \dfn{ ,} , " " ($<$ ~$>$ ).  , ~$P$ , ~$P^S$. 򀁋~$P$ ~$P^S$ . , ~$P^S$ ( , $P^S$--- ). 퀏, ~(26) $$ \tableau{ 15 & 14 & 13 & 11 & 2 & (16)\cr 12 & 10 & 6 & 4\cr 9 & 5 & 3 \cr 8 & 1 \cr (17)\cr } $$ ~(25). --- . {\let\newpar=\par \proclaim 򅎐 D. (.~, .~.~.)  $$ \pmatrix{ q_1 & q_2 & \ldots & q_n \cr p_1 & p_2 & \ldots & p_n \cr } \eqno(27) $$ --- , ~$(P, Q)$. %% 78 {\medskip\narrower \item{a)}呋 () ~$q$, ~$p$, $$ \pmatrix{ q_n & \ldots & q_2 & q_1 \cr p_n & \ldots & p_2 & p_1 \cr } \eqno(28) $$ ~$(P^T, (Q^S)^T)$. \newpar {\noindent \rm (ꀊ , ~$T$ ; $P^T$---, a~$(Q^S)^T$--- , ~$q$ .)} \newpar \item{b)}呋 ~$p$, ~$q$, ~(37) ~$((P^S)^T, Q^T)$. \newpar \item{c)}呋 ~$p$, ~$q$, ~(28) ~$(P^S, Q^S)$. \newpar} \par } \proof . , ~(a) ~$(P^T, X)$, ~$X$--- , .~6; , ~B, ~(b) ~$(Y, Q^T)$, ~$Y$--- , ~$P^T$. ~$p_i=\min\set{p_1,~\ldots, p_n}$; ~$p_i$---"" , ~$Y$ ~A. 򀊈 , ~$p_1$,~\dots, $p_{i-1}$, $p_{i+1}$,~\dots, $p_n$, , ~$Y-\set{p_i}$, ..~$Y$, ~$p_i$. ~C, ~$p_1$,~\dots, $p_{i-1}$, $p_{i+1}$,~\dots, $p_n$, , ~$d(P)$, ~$P$ ~S. 荄 ~$n$ ~$Y-\set{p_i}=(d(P)^S)^T$. $$ (P^S)^T-\set{p_i}=(d(P)^S)^T \eqno (29) $$ ~$S$, $Y$~ , ~$(P^S)^T$, ~$Y=(P^S)^T$. ~(b); (a)~ ~B.  ~(a) ~(b) , ~(c) ~$(((P^T)^S)^T, ((Q^S)^T)^T)$, a ~$(P^S, Q^S)$, ~$(P^S)^T=(P^T)^S$ ~$S$ . \proofend , , , . 呋 ~$p_1$,~\dots, $p_n$ %% 79 ~$P$, ---$p_n$,~\dots, $p_1$, \dfn{} ~$P^T$. 呋 ~$p_n$,~\dots, $p_1$, ~$<$ ~$>$, ~$0$ ~$\infty$, ~$P^S$. 퀑 . 텎 - . - ; , , ~(c) \emph{,} ~$P$ ~$Q$. 񎎒, ~A, .~ [{\sl American J.\ Math.,\/} {\bf 60} (1938), 745--760, Sec.~5] . 텒 , . ~B . 썎 .~ , , [{\sl Canadian J.\ Math.,\/} {\bf 13} (1961), 179--191]. "$P$"- ~D~(a). .~.~ [{\sl Math. Scand.,\/} {\bf 12} (1963), 117--128] ~B "$Q$"- ~D~(a), ~(b) ~(c). ; , ~$p_1$,~\dots, $p_n$ , , "" , ~$p$, ~$q$ , ꍓ [{\sl Pacific J.\ Math.,\/} {\bf 34} (1970), 709--727].  : \emph{ , ~$\set{1, 2,~\ldots, n}$, ~$(n_1, n_2,~\ldots, n_m)$, ~$n_1+n_2+\cdots+n_m=n$?}  ~$f(n_1, n_2,~\ldots, n_m)$; $$ \displaylines{ f(n_1, n_2, \ldots, n_m)=0, \rem{ ~$n_1\ge n_2\ge \ldots\ge n_m\ge 0$;} \hfill \llap{(30)}\cr f(n_1, n_2, \ldots, n_m, 0)=f(n_1, n_2, \ldots, n_m); \hfill\llap{(31)}\cr f(n_1, n_2, \ldots, n_m)=f(n_1-1, n_2, \ldots, n_m) +f(n_1, n_2-1, \ldots, n_m)+\cdots+f(n_1, n_2, \ldots, n_m-1),\hfill\cr \hfill \rem{ $n_1\ge n_2 \ge \ldots \ge n_m \ge 1$.}\quad (32)\cr } $$  , ; , ~$(6, 4, 4, 1)$ ~$f(5, 4, 4, 1)+f(6, 3, 4, 1)+f(6, 4, 3, 1) + f(6, 4, 4, 0)=f(5, 4, 4, 1) %%80 +f(6, 4, 3, 1)+f(6, 4, 4)$, ~$(6, 4, 4, 1)$ ~$\set{1, 2,~\ldots, 15}$ ~$15$ ~$(5, 4, 4, 1)$, $(6, 4, 3, 1)$ ~$(6, 4, 4)$. 臎 \picture{p. 80, (33)} ~$f(n_1, n_2,~\ldots, n_m)$, , : $$ f(n_1, n_2,~\ldots, n_m)= {\Delta(n_1+m-1, n_2+m-2, \ldots, n_m) n! \over (n_1+m-1)! (n_2+m-2)! \ldots n_m!} \rem{~$n_1+m-1\ge n_2+m-2 \ge \ldots \ge n_m,$} \eqno (34) $$ ~$\Delta$ $$ \Delta(x_1, x_2, \ldots, x_m)=\det\pmatrix{ x_1^{m-1} & x_2^{m-1} & \ldots & x_m^{m-1}\cr \vdots & & & \vdots \cr x_1^2 & x_2^2 & & x_m^2 \cr x_1 & x_2 & & x_m \cr 1 & 1 & \ldots & 1 \cr }=\prod_{1\le i < j \le m} (x_i-x_j) \eqno(35) $$ 􎐌~(34) .~ [Sitzungsberichte Preuss. Akad.\ der Wissenchaften (Berlin, 1900), 516--534, Sec.~3], ; , . ꎌ 쀊-쀃 [{\sl Philosophical Trans.,\/} {\bf A-209} (London, 1909), 153--175]. , ~(30) ~(31) , ~(32) , ~$y=-1$ .~17. ~A . ⇟ %%81 , $$ \eqalign{ n! &= \sum_{\scriptstyle k_1\ge \ldots \ge k_n \ge 0 \atop \scriptstyle k_1+\cdots+k_n=n} f(k_1, \ldots, k_n)^2=\cr &= n!^2 \sum_{\scriptstyle k_1\ge \ldots \ge k_n \ge 0 \atop \scriptstyle k_1+\cdots+k_n=n} {\Delta(k_1+n-1, \ldots, k_n)^2 \over (k_1+n-1)!^2\ldots k_n!^2}=\cr &= n!^2 \sum_{\scriptstyle q_1>q_2>\ldots>q_n\ge 0 \atop \scriptstyle q_1+\cdots+q_n=(n+1)n/2} {\Delta(q_1, \ldots, q_n)^2 \over q_1!^2\ldots q_n!^2};\cr } $$ $$ \sum_{\scriptstyle q_1+\cdots+q_n=(n+1)n/2 \atop \scriptstyle q_1 \ldots q_n \ge 0} {\Delta(q_1,\ldots, q_n)^2\over q_1!^2 \ldots q_n!^2} = 1. \eqno(36) $$ ~$q_1>q_2>\ldots>q_n$, --- ~$q$ , ~$0$ ~$q_i=q_j$. .~24. 􎐌 , "". \dfn{,} \picture{~5. 󃎋 .} , , . 퀏, .~5---, ~$(2, 3)$ ~2 ~3; . .~5 . 呋 ~$(n_1, n_2,~\ldots, n_m)$, ~$n_m\ge 1$, ~$n_1+m-1$. 䀋 , ~1 ~$n_1+m-1$, $n_1+m-2$,~\dots, $1$, \emph{ $(n_1+m-1)-(n_m)$, $(n_1+m-1)- %%82 -(n_{m-1}+1)$,~\dots, $(n_1+m-1)-(n_2+m-2)$.} 퀏, .~5 $1\hbox{-}$ ~$12$, $11$, $10$,~\dots, $1$, ~$10$, $9$, $6$, $3$, $2$; , ~$(6, 3)$, $(5, 3)$, $(4, 5)$, $(3, 7)$, $(2, 7)$ ~$(1, 7)$. $j\hbox{-}$~ ~$n_j+m-j$,~\dots, $1$, ~$(n_j+m-j)-(n_m)$,~\dots, $(n_j-m-j)-(n_{j+1}-m-j-1)$.  , $$ (n_1+m-1)!\ldots{}(n_m)!/\Delta(n_1+m-1,~\ldots, n_m). $$ ~(34); \proclaim 򅎐~H. (.~.~, .~, .~.~򐎋.) ꎋ , ~$\set{1, 2,~\ldots, n}$, ~$n!$, . \endmark 򀊎 ; ( , ) . ꀆ --- ; , , ~$(i, j)$ , , .  ~$i$, $j$ ~H.  , . ⑅ ~H , , ( ). 񓙅 ~H , .~2. , $n$~ , , ~$a_1\,a_2\,\ldots\,a_{2n}$ ~$S$ ~$X$, , ~$S$ ~$X$, . (.~.~2.3.1-6 ~2.2.1-3.) 򀊈 ~$(n, n)$; 1- ~$i$, , ~$a_i=S$, 2- ---, ~$a_i=X$. 퀏, $$ S\; S\; S\; X\; X\; S\; S\; X\; X\; S\; X\; X $$ $$ \tableau{ 1 & 2 & 3 & 6 & 7 & 10 \cr 4 & 5 & 8 & 9 & 11 & 12 \cr } \eqno(37) $$ %%83 󑋎, , , ~X ~$S$. ~H ~$(n, n)$ $$ (2n)!/(n+1)!n!; $$ , $n$~ ( ~(2.3.4.4-13)). ᎋ , ~$(n, m)$ ~$n\ge m$, " ", .~2.2.1-4. 򀊈 , ~H . ⑟ ~$A$ ~$(n, n)$ ~$\set{1, 2,~\ldots, 2n}$ ~$(P, Q)$ . 񋅄 쀊-쀃 [Combinatory Analysis, {\bf 1} (1915), 130--131]. ~$P$ ~$\set{1,~\ldots, n}$, , ~$A$, ~$Q$ , ~$A$, ~$180^\circ$ ~$n+1$, $n+2$,~\dots, $2n$ ~$n$, $n-1$,~\dots, $1$. 퀏, ~(37) $$ \tableau{ 1 & 2 & 3 & 6 \cr 4 & 5 \cr } \hbox{ } \revtableau{ \omit &\omit \hfil\vrule& 7 & 10 \cr 8 & 9 & 11 & 12\cr }\,; $$ $$ P=\tableau{ 1 & 2 & 3 & 6 \cr 4 & 5 \cr },\quad Q=\tableau{ 1 & 2 & 4 & 5 \cr 3 & 6 \cr }. \eqno(38) $$ 퀎, , $n$~ , ~$(n, n)$. 񋅄 (~.~7), \emph{ ~$a_1\,a_2\,\ldots\,a_n$ ~$\set{1, 2,~\ldots, n}$, ~$a_i>a_j>a_k$ ~$ia_k>a_i$ ~$ia_{j_2}>\ldots>a_{j_r}$, ~$j_1n_2>\ldots>n_m$ " ", ~$i+1$ , , ~$i$; , ~$(7, 5, 4, 1)$ \picture{3. p.90} 䎊, ~$(n_1, n_2,~\ldots, n_m)$ ~$1$, $2$,~\dots, $n=n_1+n_2+\cdots n_m$ , , ~$n!$ " "; ~$11$, ~$1$ ~$2$. (󃎋 , " ", %% 91 ~U, ~$90^\circ$, ~L.) 蒀, $$ 17! / 12\cdot 11\cdot 8\cdot 7\cdot 5\cdot 4\cdot 1\cdot 9\cdot 6\cdot 5\cdot 3\cdot 2\cdot 5\cdot 4\cdot 2\cdot 1\cdot 1 $$ , . \rex[30] (.~). ~$A_n$ ~$\set{1, 2,~\ldots, n}$ $n$~ \picture{p.91} , ? 퀉 ~$g(z)=\sum A_n z^n/n!$ \ex[M39] 񊎋 ~$(n_1, n_2,~\ldots, n_m)$ ~$\set{1, 2,~\ldots, N}$, \emph{ ,} , --- ? 퀏, $m$~ $(1, 1,~\ldots, 1)$ $\perm{N}{m}$~; ~$m$ $\perm{m+N-1}{m}$~; ~$(2, 2)$ ${1\over3}\perm{N+1}{2}\perm{N}{2}$~. \ex[28] 䎊, $$ \displaylines{ \sum_{\scriptstyle q_1+\cdots+q_=t \atop \scriptstyle 0\le q_1,~\ldots, q_n\le m} \perm{m}{q_1}\ldots\perm{m}{q_n}\Delta(q_1,~\ldots, q_n)^2=\hfill\cr \hfill =n!\perm{nm-(n^2-n)}{t-{1\over 2}(n^2-n)} \perm{m}{n-1} \perm{m}{n-2}\ldots \perm{m}{0}\Delta(n-1,~\ldots, 0)^2. \cr } $$ [\emph{󊀇:} , ~$\Delta(k_1+n-1,~\ldots, k_n)=\Delta(m-k_n+n-1,~\ldots, m-k_1)$; ~$n\times (m-n+1)$ , ~(38), , ~(36).] \ex[20] ~(42) ? \ex[21] ⛗~$\int_{-\infty}^\infty x^t \exp(-2x^2/ \sqrt{n})\,dx$ ~$t$. \ex[24] ~$Q$--- ߍ ~$\set{1, 2,~\ldots, n}$, ~$t$ ~$r_i$ ~$c_i$. , ~$i$ ""~$j$, ~$r_ia_{i+1}$. (񋅄, , ~$Q$. .) % \item{c)}~䎊, ~$1\le i < n$ ~$i$ ~$i+1$ ~$Q$ , ~$i+1$ ~$i$ ~$Q^S$. \medskip} \ex[47] ꀊ ~$\set{1, 2,~\ldots, n}$? ( ~A.  , .~.~စ ~.~ᐎ [{\sl Math. Comp.,\/} {\bf 22} (1968), 385--410], , " ", , ~$l_n$ ~$2\sqrt{n}$; .~ ~.~뎃 , ~$\liminf_{n\to\infty} l_n / \sqrt{n}\ge 2$ ( ). \ex[50] 葑 , , . \ex[42] (.~.~). , ~$P$ ~$P^S$--- , , .  ~$\set{1, 2,~\ldots, n}$ , . 퀉 , ~(26), ~$1$, $2$,~\dots, , ~S, ~(1), (2),~\dots{} . , , , ; \ex[30] ~$x_n$--- ~$n$ ~$n\times n$ , ~$180^\circ$. 퀉 ~$x_n$. %% 93 \bye