\input style .  쀐 , , ~M, , . 썎 , . 䎏 򅉗, , , , , .~쀋 ({\sl JACM,\/} {\bf 6} (1959), 376--383). {\sl (5)~ .\/} , . 呋 $X$~ , $$ Y=\mu+\sigma X \eqno(24) $$ ~$\mu$, ~$\sigma$. ᎋ , ~$X_1$ ~$X_2$--- $$ Y_1=\mu_1+\sigma_1 X_1, \qquad Y_2=\mu_2+\sigma_2(\rho X_1+\sqrt{1-\rho^2}X_2), \eqno(25) $$ ~$Y_1$ ~$Y_2$---\emph{} , ~$\mu_1$, $\mu_2$, ~$\sigma_1$, $\sigma_2$ ~$\rho$. ( ~$n$ .~~.~13.) \section{D.~ }. 䐓 --- \emph{ .} 򀊈 , " ". 퀏, $\mu$~ -, ~$\mu$. $$ F(x)=1-e^{-x/\mu}, \rem{$x\ge0$.} \eqno(26) $$  , $X$~ ~$1$, $\mu X$~ ~$\mu$.  ~$\mu=1$.  . {\sl (1)~뎃 .\/} ߑ, ~$y=F(x)=1-e^{-x}$ ~$x=F^{-1}(y)=-\ln(1-y)$. , %% 142 ~(6), ~$-\ln(1-U)$ . $1-U$~ , ~$U$--- , $$ X=-\ln U \eqno(27) $$ , . ( ~$U=0$.) {\sl (2)~셒 .\/} 񋅄 (.~쀐) . \alg E.( ~$1$.) 葏 ~$P[j]$, $Q[j]$ ~$j\ge 1$, $$ P[j]=1-{1\over e^j}, \quad Q[j]={1\over e-1}\left({1\over1!}+{1\over2!}+\cdots+{1\over j!}\right). \eqno(28) $$ 䋈 , . \st[퀗 .] 󑒀~$j\asg1$. ⛐ ~$U_0$ ~$U_1$ ~$X\asg -U_1$. \st[숍 ?] 呋~$U_0U_j$, ~$X\asg U_j$. ⅐ ~\stp{2}. \st[퀗 .] ( , $X$, , .) ⛐ ~$U$ ~$j\asg 1$. \st[񄅋 ?] 呋~$UU\ge (1-p)^n$, ~$p(1-p)^{n-1}$, . ~$p=1/2$ , ~(34) ~$N=\ceil{-\log_2 U}$, .~.~$N$ , ~$U$. {\sl (2)~ል ~$(t, p)$.\/} 呋 ~$p$, $t$~ , ~$N$ ~$n$ ~$\perm{t}{n}p^n(1-p)^{t-n}$ (.~.~1.2.10). 䋟 - , ~(34).  , $N_1$~ ~$(t_1, p)$ , , $N_2$~ ~$(t_2, p)$, $N_1+N_2$~ ~$(t_1+t_2, p)$. ꎃ $t$~, %%146 ~$tp$ ~$\sqrt{tp(1-p)}$. . , .~25. {\sl (3)~ \/} ~$\mu$. , .  , . 퀏, - . ⅐ , ~$N=n$, $$ e^{-\mu}\mu^n/n!, \rem{$n\ge0$.} \eqno(35) $$ 呋~$N_1$, $N_2$--- ~$\mu_1$, $\mu_2$, , ~$N_1+N_2=n$, $$ \sum_{0\le k \le n}{e^{-\mu_1}\mu_1^k\over k!} {e^{-\mu_2}\mu_2^{n-k}\over (n-k)!} ={e^{-(\mu_1+\mu_2)}(\mu_1+\mu_2)^n\over n!}. $$ 򀊈 , $N_1+N_2$~  ~$(\mu_1+\mu_2)$. , , ~$\mu$, $\mu$~ . \alg Q.(  ~$\mu$.) \st[⛗ .] ~$p\asg e^{-\mu}$ ~$N\asg0$, $q\asg1$. ( $e^{-\mu}$~ , , , ~$p$ ~$q$.) \st[ .] ⛐ ~$U$, ~$0$ ~$1$. \st[󌍎.] 󑒀~$q\asg qU$. \st[, ~$e^{-\mu}$.] 呋~$q\ge p$, ~$N\asg N+1$ ~\stp{2}. ~$N$. \algend , , $$ U_1\ge p, \quad U_1U_2\ge p, \quad, \ldots, \quad U_1U_2\ldots U_n\ge p, \quad U_1U_2\ldots U_{n+1}

0$, ~\stp{2}, . \algend , ~$\mu$, ~$M[1]$, $M[2]$,~\dots, $M[n]$. 퀏, ~$n=10$, $$ \vcenter{\halign{ \hfil$#$&${}#$\hfil\bskip&&\bskip$#$\hfil\bskip\cr j&=1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\cr M[j]&=2^{-15} & 2^{-12} & 2^{-9} & 2^{-6} & 2^{-3} & 2^{-1} & 1 & 2 & 4 & \hfill 8 \cr }} \eqno(36) $$ %% 148 ~$\mu$, ~$\mu\ge50$. ~$\mu0$, ~$1-e^{-\mu}$, .~.\ ~$1\over 32\,000$.  ~$\mu$ , $N$~ . 򎋜 ~$M[j]=4$ ~$8$ ~K3. 䋟 ~$\mu$ , ~$\sqrt{\mu}$. 僎 , . \excercises \ex[10] ꀊ , ~$\alpha$ ~$\beta$ ($\alpha<\beta$)? \ex[M16] , ~$mU$--- ~$0$ ~$m-1$, \emph{} , ~$\floor{kU}=r$, ~$0\le r < k$. 񐀂 ~$1/k$. \rex[14] , , ~$U$ ~$0$ ~$k-1$, \emph{}~$U$ ~$k$ . 򀊈 , (1) : % CR, % $$ \vbox{ \mixcode ENTA & 0 \cr LDX & U \cr DIV & K \cr \endmixcode } $$ ~$X$. ? \ex[20] 䎊 ~(7). \rex[21]  ~$px+qx^2+rx^3$, ~$p\ge0$, $q\ge0$, $r\ge0$ ~$p+q+r=1$. \rex[21] ⅋~$X$ . {\medskip\narrower {\sl "~1.\/}~⛐ ~$U$, $V$. % {\sl ~2.\/}~呋~$U^2+V^2\ge1$, ~1, ~$X\asg U$." \medskip} \noindent ꀊ ~$X$? ꀊ ~1? ( .) \ex[M18] , 쀐 ~$p_j$ ~$1/256$ ~$p_j=\floor{64 f(j/4)}/256$, $1\le j \le 12$. \ex[10] 瀗 ~$f_{13}$,~\dots, $f_{24}$ 쀐 ~$f_1$,~\dots, $f_{12}$? ( , ~$(f_1, f_{13})$, $(f_2, f_{14})$,~\dots{} ?) \ex[10]  ~$f(x)$ .~9 ~$x<1$ ~$x>1$? \ex[21] ⛂ ~$a_j$, $b_j$ ~(20).  , ~$E[j]=16/j$, ~$1\le j \le 4$; $E[j]=1/(e^{j/16-1/32}-1)$, ~$5\le j \le 12$. %% 149 \rex[27] 䎊, ~M8--M9 ~M , , .~.\ ~$x\ge3$ , ~$X$ ~$V_{n+1}=4V_n\times(1-V_n)$. 򅏅, , ~$\sin^2\pi U$, ~$U$--- . 䐓 , : $$ F(x)={1\over \sqrt{2\pi}}\int_0^x {dx \over \sqrt{x(1-x)}}. $$ , ~$V_n=\sin^2 \pi U_n$, , ~$U_{n+1}=(2U_n)\bmod 1$. , (.~\S~3.5), , ~$U_n$ . ~$V_n$ , , , (von Neumann, {\sl Collected Works,\/} Vol.~V, pp.~768--770).  ( ~$V_0$) ~$\$, , .  ? 쎆 - ? \ex[25]  $X_1$, $X_2$~\dots, $X_5$--- , ~$0$ ~$1$ ~$1/2$. ꀊ , ~$X_1\lor (X_2\land (X_3\lor (X_4 \land X_5)))$ ~$1$. 񄅋 . %% 151 \bye