ением 220 В, потребляют мощность 7--15 Вт и имеют скорость вращения на выходном валу встроенного редуктора 2 об/мин. В дальнейшем мы будем иметь в виду подобный двигатель.

Если число зубьев шестерни 2 составляет 360, а винт вращается со скоростью 1 оборот в 4 минуты, то шестерня сделает полный оборот за 1440 минут (86400 с), или за одни солнечные сутки. Это хорошо для солнечного телескопа, однако телескоп, предназначенный для наблюдения звезд, должен делать полный оборот за звездные сутки, которые примерно на 4 минуты короче солнечных и равны 86164,09 с. Поэтому на шестерне надо нарезать 359 зубьев, чтобы телескоп, не отставая, следил за звездой.

Эта небольшая разница мало дает о себе знать при визуальных наблюдениях, когда даже при большом увеличении приходится поправлять положение телескопа раз в одну-две минуты, но становится слишком неприятной при фотографических наблюдениях с длительными экспозициями на астрографе с фокусным расстоянием 1 м и более. В этом случае поправки приходится делать каждые 3--4 с, что превращает работу в практически ручное гидирование.

165.gif

Рис. 70. Часовой привод 150-миллиметрового телескопа автора с механизмом тонких движений.

1 -- червячный винт, 2-- червячная шестерня, 3 -- полярная ось, 4 -- шестерня червячного винта, 5 -- шестерня выходного вала редуктора синхронного электродвигателя, 6 -- электродвигатель с вмонтированным редуктором, 7 -- хомут, притормаживающий корпус двигателя, 8--ручка механизма тонких движений.

Здесь мы приводим таблицу из статьи Эдварда Фейджина [17], где рассчитаны различные комбинации шестерен и приведены ошибки соответствующих механизмов. Эта таблица несколько изменена в предположении, что двигатель делает не 1 об/мин, как у Фейджина, а 2 об/мин, как это имеет место в нашем случае (табл. 12). В первой колонке приведено передаточное число между червячной шестеренкой и винтом. Если винт однозаходный, то это число равно числу зубьев на шестерне. Во второй и третьей колонках приведены относительные числа зубьев шестерни на валу винта и валу двигателя соответственно. Например, при числе зубьев однозаходной шестерни 169 передаточное отношение между винтом и валом двигателя составит 17/1. Значит, на винте придется поста


вить, скажем, шестерню со 170 зубьями, а на валу двигателя--с 10; умножив эти числа, например, на 1,4 мы получим для шестерни винта 238, а для шестерни вала -- 14 зубьев.

В тех случаях, когда число зубьев на одной из цилиндрических шестерен велико, можно добавить еще одну пару шестерен с передаточным отношением

Т а б л и ц а 12

Число зубьев червячной шестерни

Относительное число зубьев

Ошибка за звездные сутки, с

на валу червячного винта

на валу двигателя

147

254

13

0,53

169

17

1

25,91

200

158

11

17,73

207

111

8

-0,34

221

13

1

25,91

252

57

5

19,91

254

147

13

0,53

255

214

19

-0,93

266

54

5

19,91

271

53

5

13,91

321

170

19

-0,93

333

69

8

-0,34

338

17

2

25,91

359

8

1

-4,09

378

38

5

19,91

381

98

13

0,53

399

36

5

19,91

414

111

16

--0,34

438

400

61

-0,16

476

356

59

--0,02

508

147

26

0,53

510

107

19

-0,93

527

109

20

0,41

2/1, 4/1 или каким-нибудь другим, удобным для любителя.

Чтобы проверить правильность расчета, нужно умножить передаточное число червячной пары на отношение между числами зубьев шестерни винта 4 и шестерни вала 5 и умножить на время одного оборота двигателя (0,5 мин). Например, для однозаходной шестерни с числом зубьев 476 отношение числа зубьев шестерен винта и вала составит 356/59. Так как один оборот вал электродвигателя делает за 0,5 минуты, то произведение будет равно 476 Х 356/59 Х 0,5 = 1436,0677 мин = 86 164,07 с,

т. е., механизм спешит на 0,02 с.

Число зубьев 356 на шестерне вала винта велико, поэтому можно добавить еще одну пару шестерен. Эта пара может иметь отношение 2/1, тогда число зубьев на шестерне винта уменьшится до 178. Можно дополнительную пару взять с передаточным числом 4/1, тогда число зубьев на шестерне винта сократится до 89. Мы дали столь подробное описание редуктора между валом электродвигателя и полярной осью потому, что любитель чаще всего вынужден подбирать шестерни из старых механизмов, и потому из большого числа примеров ему легче найти подходящий для него вариант. з 57. КОНСТРУКЦИИ ЧЕРВЯЧНЫХ ПАР

Червячная пара--одно из самых уязвимых мест с точки зрения жесткости монтировки в целом. Диаметр червячного колеса обычно небольшой -- он равен чаще всего диаметру зеркала телескопа или на 10--25% превышает его. Впрочем, в профессиональных монтировках для любителей диаметр шестерен может быть меньше диаметра зеркала в 1,5--2 раза. Мы, однако, постараемся придерживаться первого варианта, особенно если телескоп предназначен для фотографирования в главном фокусе.

Малый радиус определяет плечо рычага, который сопротивляется крутящему моменту на полярной оси. Даже если телескоп очень хорошо уравновешен относительно полярной оси, случайные нагрузки от ветра, прикосновения и т. п. создают значительные усилия в месте зацепления червяка с шестерней и в подшипниках червяка. Например, если длина трубы 150-миллиметрового телескопа составляет 1200 мм, а сама она прикреплена к оси склонений в середине, то, приложив усилие на конце трубы в 1 кг, мы получим на винте усилие в 8 кг, если диаметр шестерни 150 мм. Поэтому узел червячного винта должен быть сконструирован и изготовлен с большой тщательностью.

Один из возможных вариантов червячного механизма следующий. Винт установлен в неподвижных


подшипниках, которые удерживаются неподвижными опорами. Эти опоры должны обеспечивать высокую жесткость в направлении оси винта. Поэтому лучше всего их заключить в кожух из 4-миллиметровой стали. Этот кожух будет защищать винт от пыли и грязи и не даст возможности опорам-подшипникам наклоняться в направлении оси винта, т. е. в самом опасном направлении. Разумеется, кожух должен иметь вырез для подведения шестерни к червяку.

Так как винт установлен на строго определенном расстоянии от шестерни и так как сама шестерня может немного "бить" на полярной оси в силу того, что слегка эксцентрично выточена или насажена на ось, винт и шестерню нужно пришлифовать друг к другу. Для этого установим какой-нибудь двигатель, который придаст вращение винту со скоростью 5--10 об/с и подмажем карборунда или другого абразива (например, М40) с, керосином. Во время пришлифовки также снимутся мелкие неровности на винте и шестерне, оставшиеся после нарезания зубцов и винта. Конечно, таким образом можно устранить только очень небольшое "биение". Шестерня с грубым "биением" для этой конструкции непригодна. После пришлифования в течение 10--20 минут тщательно промоем с мылом и винты шестерню, протрем, высушим и смажем их маслом.

Описанная шестерня может вращаться только от винта и потому ее обычная скорость слишком мала для грубого наведения. Можно поступить так, как это в последнее время стали делать для небольших и умеренных профессиональных телескопов (рис. 71, а): последняя пара шестерен между винтом и валом двигателя размыкается, двигатель отводится, а с противоположной стороны шестерни 3 винта подводится другой электродвигатель 2 с шестерней на валу, но с большим числом оборотов. Нужно, чтобы после этого винт червячной пары 3 получил вращение со скоростью примерно 5 об/с. Тогда телескоп будет поворачиваться вокруг полярной оси со скоростью примерно 5--10º/с в зависимости от числа зубьев червячной шестерни. Поворот на 180º будет совершен за 20--40 с. После грубого наведения мотор 2 грубого наведения отводится от шестерни 3 и одновременно замыкается редуктор часового двигателя. Очевидно, что мотор грубого наведения может быть асинхронным, но обязательно реверсивным (меняющим направление вращения по желанию наблюдателя). Еще проще двигатели установить неподвижно, а перебрасывать "паразитную" шестерню. В старых монтировках фирмы Карл Цейс существует механизм замыкания червячной шестерни и поляр-

166.gif

167.gif

Рис. 71. Конструкции механизмов часового привода.

а) Экваториальная монтировка "со скручиваемой полярной осью". 1-- синхронный электродвигатель часового привода, 2 -- электродвигатель грубого наведения, 3-- шестерня червячного винта, 4 -- червячная шестерня, 5 -- неподвижная часть полярной оси, 6 -- шарикоподшипник, 7 -- подвижная полярная ось, 8 -- ось склонений, 9 -- корпус основания станины. б) Экваториальная монтировка, 1 -- хомутик тормоза, 2 -- полярная ось, 3 -- червячная шестерня, 4 -- винт тормоза, 5--червячный винт. в) Червячная пара с замыкаемым винтом. 1-- червячный винт, 2--подшипники винта, 3--корпус винта, 4--ось, на которой отводится винт, 5 -- червячная шестерня, 6 -- пружина

оси (рис. 71,б). В свободном положении шестерня 3, замкнутая на винт 5, остается неподвижной иди движется с суточной скоростью а полярная ось 2 свободно, но без люфтов в ней поворачивается. Чтобы замкнуть ось и шестерню, на специальные приливы на шестерне и на оси, проточенные до совершенно одинаковых диаметров надевается хомутик 1, который в незамкнутом положении вращается на этих приливах. Если же с помощью зажимного винта 4 хомутик затянуть, то он одинаково зажмет и шестерню и полярную ось, после чего они вращаются вместе.

Открепив зажимной винт, мы сможем свободно поворачивать телескоп вокруг полярной оси, пока шестерня движется, приводимая во вращение часовым механизмом двигателя. Наводя телескоп на объект, мы снова затягиваем винтом хомутик, и теперь полярная ось движется вместе с шестерней.

В последние годы фирма Карл Цейс выпускает любительские телескопы, снабженные червячными парами с замыкаемым винтом. Приведем в качестве примера одну из новосибирских конструкций подобного механизма (рис. 71, в). Здесь винт 1 с подшипниками 2 вставлен в корпус 3, который на специальной оси 4 может, несколько поворачиваться так, что винт выходит из зацепления с шестерней 5. Специальная пружина 6 поджимает корпус, и винт постоянно находится в зацеплении, даже если шестерня имеет достаточно большое "биение". Для грубого наведения надо оттянуть винт и, когда шестерня освободится, навести телескоп. После этого винт подводится к шестерне.

При этом не всегда нарезка винта попадает точно в углубление между зубьями шестерни. Это приводит к тому, что иногда во время замыкания винта телескоп может сместиться в ту или иную сторону на 0,5--1º в зависимости от числа зубьев на червячной шестерне. Так как большинство любительских телескопов имеют искатели, то это не страшно. Смещение объекта в поле зрения искателя на 1º легко поправить и привести объект на перекрестие, немного повернув червячный винт. Особое внимание надо уделить редуктору между двигателем и червячным винтом. Здесь ошибка в нарезке зубьев шестерен или не концентричная посадка шестерен на оси приведет к периодической ошибке, и ход двигателя придется ежеминутно корректировать. з 58. МЕХАНИЗМЫ ТОНКИХ ДВИЖЕНИЙ В ЧАСОВЫХ ПРИВОДАХ

Поскольку часовой механизм приводится во вращение синхронным электродвигателем со строго постоянной скоростью, важно ввести приспособление, которое позволило бы вносить небольшие изменения, поправки.

Проще всего было бы установить на оси червяка механизм так называемого конического дифференциала: системы шестерен, позволяющие при неподвижном корпусе редуктора передавать вращение без изменения скорости, а при вращении корпуса увеличивать или уменьшать скорость на выходе механизма. Мы не можем позволить себе подробное описание этого механизма и его изготовление, так как его проще подобрать и на месте решить, как его применить в конкретном случае. Одна из разновидностей дифференциала -- плоский дифференциал, или планетарная система. Эта система служит редуктором с огромным передаточным числом; вращением корпуса или одного из сателлитов (мелких шестерен, обегающих две большие шестерни) можно увеличивать или уменьшать скорость вращения на выходе планетарной системы. Планетарные системы с небольшим передаточным числом применяются в электродрелях.

Можно выполнить червячную пару по схеме червячного дифференциала (рис. 72). В этом случае винт 1 может перемещаться в небольших пределах вдоль собственной оси. Тогда, не останавливая часового привода, можно несколько "подать" червяк в ту или другую сторону, а вместе с этим и слегка повернуть шестерню. Аналогичное устройство применено в механизме А. Гамона (см. з 55).

Удобное решение было найдено автором книги для одного из своих телескопов (см. рис. 70). Здесь винт 1 неподвижно закреплен на оси. Дополнительное вращение получается за счет поворота корпуса электродвигателя 6 вместе со встроенным редуктором. Поворачивая двигатель с помощью ручки 8 на некоторый угол, мы увеличиваем или уменьшаем скорость вращения червячного винта. Здесь корпус двигателя установлен в хомуте 7, который притормаживает корпус, чтобы включенный двигатель не начал вращаться в обратную сторону. Прижим регулируется так, чтобы двигатель во время работы оставался неподвижным, но его было бы нетрудно повернуть рукой.

Наконец, возможно немеханическое решение задачи. Если синхронный двигатель питается не от сети,

168.gif

Рис. 72. Червячный дифференциал.

1- червячный винт, 2 -- электродвигатель, 3 -- винт тонких движений, 4--возвратная пружина.

а от генератора частоты, то, меняя генерируемую частоту, можно изменить и скорость вращения двигателя. Для простоты можно построить генератор всего с двумя частотами: 50 и 100 Гц. На первой частоте двигатель работает в обычном режиме, а на второй частоте, когда надо увеличить скорость. Если же скорость надо уменьшить, двигатель ненадолго выключается кнопкой, расположенной на небольшом переносном пульте, который наблюдатель во время наблюдения держит в руках. С этого же пульта подается команда и для увеличения скорости. Это решение интересно тем, что значительно упрощается механическая часть, так как отпадает нужда в различных ручках и тягах. Кроме того, работать с таким пультом значительно удобнее, чем с традиционными механическими конструкциями. з 59. КООРДИНАТНЫЕ КРУГИ

Если телескоп установлен стационарно, имеет смысл снабдить его координатными кругами на обеих осях. С помощью кругов значительно проще находить объекты особенно когда они слабы и не могут быть видны в искатель. Круг 1 (рис. 73) устанавливается жестко на оси 2, а на корпусе 3 оси устанавливается указатель 4. Можно сделать, наоборот: на оси установить указатель, а на

169.gif

Рис. 73. Крепление координатного круга к оси.

1 -- координатный круг, 2 -- ось, 3 -- корпус оси, 4- указатель.

корпусе--круг. В каждом конкретном случае можно эту задачу решить по-разному, помня главным образом о том, чтобы ночью при слабом освещении отсчет на круге можно было видеть с максимальным удобством.

Круг склонений должен быть разделен от 0 до 90º и от 0 до --90º. Когда телескоп направлен на полюс мира, указатель должен показывать 90º.Надо не забывать при этом, что указатель или сам круг должны в небольших пределах перемещаться и закрепляться, чтобы его можно было установить совершенно точно. Также нужно помнить, что во время юстировки главного зеркала оптическая ось телескопа несколько смещается в пространстве предметов; после юстировки указатель надо слегка переместить. Впрочем, эти перемещения составляют не более нескольких долей градуса.

Круг часовых углов должен быть установлен непосредственно на полярной оси, чтобы он участвовал в движении как во время грубой так и во время тонкой наводки телескопа.

Круг часовых углов делится на 24 часа, и мелкие его деления обычно соответствуют 5 минутам времени. "Нуль" устанавливается так, чтобы указатель останавливался напротив него в положении, когда телескоп направлен на меридиан. При повороте телескопа на 15º к западу указатель должен показывать 1h, при повороте еще на 15º--2h и т. д.

Как разместить круги? Круг склонений в простейшем случае можно снабдить полоской миллиметровки, наклеенной на его обод. Полоску возьмем длиной 360 мм и размесим ее так что каждому градусу будет соответствовать 1 мм. На конце поставим "0", через 90 мм -- "900",еще через 90 мм - "0" и наконец-- "--900". Для того чтобы длина окружности в точности равнялась 360 мм, надо, чтобы диаметр круга был равен 114,6 мм, но если учесть толщину бумаги и слой

170.gif

Рис. 74. Разметка координатных кругов.

а) С помощью большого транспортира и линейки, б) с помощью циркуля и линейки, в) разметка на сверлильном станке.

клея, диаметр основы круга надо уменьшить на 0,3 мм и сделать равным 114,3 мм. Разумеется, что если диаметр круга увеличить в два раза, до 229,2 мм, то точность отсчета возрастет в два раза. Можно, как предлагал Р. Портер [14], нанести штрихи на круг из мягкого алюминия вручную (рис. 74,а, б).

Если воспользоваться сверлильным станком, как это советует Уилфред Шихен [19], можно изготовить круги, которые будут мало отличаться от фабричных (рис. 74, в). Технология их изготовления такова: на листе алюминия или другого металла толщиной около 1 мм вырезаем большой круг. Его диаметр выбираем с таким расчетом, чтобы он не задевал за стойку станка, когда установлен так, как показано на рисунке. С помощью большого школьного транспортира размечаем на краю круга градусы или минуты и часы, если это круг часовых углов. Двумя-тремя винтами крепим этот круг к выточенному на токарном станке координатному кругу телескопа так, чтобы оба круга оказались строго концентричными. Теперь с помощью винта, пропущенного через центр круга, прикрепляем его к достаточно прочной металлической пластине, чтобы оба круга могли свободно, но без люфтов вращаться вокруг этого винта. Плиту крепим к станине сверлильного станка с помощью струбцины или другим способом. На станке возле края большого вспомогательного круга делаем штрих. Установив напротив этого штриха "нуль" на краю вспомогательного круга, мы подготовились к нарезанию штрихов на круге телескопа. Теперь вставим в патрон штырь со специально заточенным резцом. Шпиндель станка надо надежно закрепить (заклинить). Действуя ручкой сверлильного станка, мы можем опускать и поднимать резец строго вертикально.

Подводим резец к краю координатного круга и примеряем его. Если нужно, устанавливаем все приспособление относительно резца точнее. Наконец, проверив положение "нуля" на вспомогательном круге, относительно штриха на станине, проводим первый штрих; его длина должна быть около 10 мм. После этого поворачиваем вспомогательный круг на 1º и проводим следующий штрих длиной около 7 мм. Длину 7 мм имеют "рядовые" штрихи, а 10 мм -- каждый 5-й и 10-й).

После того как штрихи будут нарезаны полностью, снимаем координатный круг с вспомогательного и наносим цифры. Их можно написать нитроэмалью, но нужно помнить, что для того чтобы краска держалась хорошо, ее надо наносить на металл, нагретый до 80--100º. Так как писать кистью на нагретой поверхности сложно, можно написать на металле при комнатной температуре, а потом сразу же нагреть. Лучше, однако, отдать круги граверу. (Они работают, например, в отделах или магазинах сувениров.)


з 60. ИСКАТЕЛЬ

171.gif

Рис. 75. Диоптр.

Поле зрения телескопа относительно небольшое. Даже при минимальном увеличении оно обычно не превышает 1--1,5º. Поэтому довольно трудно навести телескоп на объект, когда этот объект неяркий и ничем не выделяется среди других. Особенно тяжело искать слабые туманности и скопления, отдельные (например, переменные) звезды или слабые планеты: Уран, Нептун и астероиды. Чтобы облегчить задачу, телескопы снабжаются искателями.

В простейшем варианте это может быть диоптр. На рис. 75 видно, что визирная линия, соединяющая центры кружков диоптра, может несколько наклоняться относительно оси телескопа. Это нужно потому, что при юстировке телескопа его ось может немного смещаться. Поэтому после каждой юстировки необходимо проверить точность установки диоптра по достаточно удаленным предметам.

Лучше, однако, сделать искатель в виде небольшой зрительной трубы. В качестве объектива лучше употребить ахроматический объектив от зрительной трубы, теодолита или бинокля. Впрочем, можно обойтись сравнительно короткофокусной очковой линзой. Ее оптическая сила должна быть в пределах 3--5 диоптрии. Если вы уже знакомы с изготовлением линз, лучше эту линзу изготовить самостоятельно. Она должна быть небольшого диаметра, примерно 20--30 мм и быть плосковыпуклой, а не выпукло-вогнутой, как очковые стекла, так как в этом случае ее аберрации будут сильно портить изображения.

Во время шлифовки линзы на станке можно проверять ее фокусное расстояние. Для этого после очередного сеанса шлифовки смачиваем линзу водой и определяем ее фокусное расстояние по Солнцу. Для этого надо не забыть чтобы оправка, на которую наклеена линза, имела диаметр на 25--30% меньше диаметра линзы, для того чтобы края последней могли строить изображение Солнца.

В остальном искатель напоминает малый телескоп-рефрактор. Его увеличение должно быть близко к равнозрачковому и не превышать диаметра объектива в миллиметрах, деленного на 4--6. На трубку нужно надеть и приклеить два металлических кольца, в которые будут упираться юстировочные винты. з 61. КОЛОННЫ, СТАНИНЫ, ФУНДАМЕНТЫ

Назначение станины -- удерживать полярную ось телескопа в строго определенном положении без медленных смещений и без вибраций. Для того чтобы предотвратить вибрации, станина или колонна телескопа должна быть достаточно жесткой.

В целом телескоп можно рассматривать как консоль сложной формы с "защемлением" в плоскости опирания станины на фундамент. При равномерно распределенной нагрузке (например, при порывах ветра) изгибающий момент возрастает сверху вниз пропорционально квадрату длины этой консоли (см. рис. 44).

Поэтому жесткость всех узлов монтировки должна возрастать пропорционально квадрату высоты сверху вниз. Это вынуждает увеличивать сечения деталей монтировки при переходе от трубы телескопа к оси склонений, к полярной оси, к корпусу полярной оси, к колонне и опорам, или к станине, если телескоп не имеет колонны.

В тех случаях, когда телескоп снабжен приспособлением для регулирования наклона полярной оси в больших пределах, хорошо снабдить его небольшим опорным стержнем (рис. 50, а), который вместе с корпусом полярной оси и колонны образует треугольник -- фигуру, значительно более жесткую, чем просто угол "колонна -- корпус оси". Снабдив монтировку этим стержнем, мы добьемся большой жесткости при перемещении оси в плоскости меридиана. Однако жесткость в перпендикулярном направлении, например при порывах западного или восточного ветра, не возрастет. Единственный способ получить достаточную жесткость в этом направлении -- резко увеличить толщи


ну пластин, связывающих корпус полярной оси и колонны. Для 110-миллиметрового телескопа с фокусным расстоянием 1000--1200 мм толщина этих пластин, отлитых из алюминия, может быть около 12--15 мм, для телескопа диаметром 150 мм, особенно если это фотографический телескоп, толщина пластин должна быть

172.gif

Рис. 76. Основание монтировки телескопа из стальных труб.

увеличена до 30 мм. Важно также отметить, что жесткость узла возрастает, если в одинаковой мере уменьшится длина этих пластин.

Диаметр стальной трубы колонны также имеет большое значение. Для визуального 110-миллиметрового рефлектора он должен быть около 60--70 мм. Для фотографического рефлектора диаметром 150 мм диаметр стальной трубы -- колонны должен быть увеличен до 120 мм, В обоих случаях имеется ввиду, что высота колонны составляет примерно 700-- 800 мм. При увеличении высоты колонны надо увеличить и ее диаметр приблизительно пропорционально корню квадратному из увеличения высоты. Например, при увеличении высоты колонны в 2 раза, ее диаметр нужно увеличить в 1,4 раза.

Особо опасный узел -- место крепления ног колонны к собственно колонне. Ноги обычно представляют собой консоли с большим сечением возле колонны. Здесь надо помнить как об изгибе при простом наклоне колонны, так и при кручении колонны вокруг ее оси. Эта деформация возникает, например, в тех случаях, когда сила (прикосновение наблюдателя или порыв ветра) действует горизонтально на трубу телескопа, направленную под небольшим углом к горизонту.

Однако для телескопов более 150 мм в диаметре желательно исключить колонну, установив корпус полярной оси прямо на основание (рис. 76). Это полезно для увеличения жесткости, а также и потому, что окулярный узел, расположенный на верхнем конце сравнительно длинной трубы, становится трудно доступным, когда телескоп направлен в зенит.

Примечательно, что в этом случае регулировка наклона полярной оси может быть выполнена в небольших пределах (обычно несколько градусов). Устройство для наклона представляет собой один опорный винт, который располагается на южном конце станины. Для того чтобы установить полярную ось в плоскости меридиана, надо, чтобы станина могла в небольших пределах поворачиваться по азимуту. Для этого две северные опоры делают в виде двух роликов, оси вращения которых пересекаются на опорном южном винте. Между этими роликами на станине помещается небольшая консоль длиной 30--50 мм. На фундаменте телескопа устанавливаются два винта, между которыми и размещается эта консоль. Вращая винты в ту или иную сторону, мы поворачиваем всю станину с полярной осью к западу или востоку.

О способах точной установки полярной оси можно прочесть в инструкциях для астрономических наблюдений.

Последнее звено между телескопом и грунтом, на котором он стоит,-- фундамент. Для небольшого телескопа на колонне достаточно забетонировать или выложить кирпичом небольшую площадку, на которую во время наблюдений ставится телескоп.

Можно и небольшой телескоп сделать без колонны, установив его на станине, которая на время наблюдений помещается на бетонный или кирпичный столб, заменяющий колонну. Особенно это полезно для переносных телескопов, так как вес уменьшается.

Наконец, для больших, особенно фотографических телескопов фундамент совершенно необходим. Диаметр фундамента зависит прежде всего от высоты его вершины над уровнем земли. Не вдаваясь в подробности, приведем таблицу с примерными значениями диаметра круглого в сечении фундамента (в метрах) в зависимости от его высоты и требований к жесткости телескопа в целом, которая в свою очередь зависит от действующего диаметра зеркала и назначения телескопа (табл. 13).

Лучший материал для фундамента -- бетон или кирпичная кладка. Для невысоких фундаментов с малыми диаметрами можно с успехом применять круглые асбоцементные или стальные трубы. После установки трубы на место ее нужно заполнить щебнем или


кирпичным боем, заливая через каждые 25--30 см цементно-песчаный раствор.

Глубина закладки фундамента зависит от состава и состояния грунта. На скальных грунтах фундамент можно устанавливать прямо на поверхности, сняв только слой дерна. На песчаных, супесчаных, суглинистых

Т а б л и ц а 13

Высота фундамента , м

Фотографирование с окулярным увеличением

Визуальные наблюдения

Фотографирование в ньютоновском фокусе

150 мм

300 мм

150 мм

300 мм

150 мм

300 мм

1

0,2

0,25

0,16

0,20

0,12

0,15

2

0,4

0,50

0,32

0,40

0,25

0,30

3

0,60

0,75

0,50

0,60

0,36

0,45

4

0,80

1,00

0,64

0.80

0,50

0,60

6

1,20

1,50

0,96

1,20

0,72

0,90

10

2,00

2,50

1,00

2,00

1,20

1,50

и глинистых грунтах глубина заложения фундамента принимается на 10 см ниже глубины промерзания грунта. Так, в районе Новосибирска она составляет 2,2 м и 2,0 м и городе и сельской местности соответственно; в Москве глубина промерзания грунта составляет 1,4 м. Особенно важно это условие выполнять, если грунты влажные, глинистые (так называемые пучинистые). В сухих грунтах, особенно песчаных и супесчаных, возможна меньшая глубина заложения фундамента (в соответствии с многолетним опытом местного строительства). Для того чтобы предотвратить неравномерное оседание грунта под тяжестью фундамента, нужно, чтобы нагрузка на грунт не превышала допустимую. Чтобы узнать удельную нагрузку на каждый квадратный сантиметр грунта, надо вес фундамента с телескопом разделить на площадь основания фундамента. Например, телескоп весит 50 кг, фундамент телескопа имеет высоту 4 м при диаметре 0,6 м. Объем фундамента 1,13 м2. При объемном весе бетона 1,6 т/м3 вес фундамента составит 1,8 т. Очевидно, что при таком массивном фундаменте весом телескопа можно пренебречь. Разделив вес фундамента на площадь его основания получаем давление на грунт, оно равно 0,64 кг/см2. Из табл. 14 (сопротивление грунта в кг/см2) видно, что такое давление допустимо даже при самом слабом грунте.

Одна из самых неприятных проблем -- проблема микровибраций грунта прежде всего от проходящего поблизости транспорта, работающих тяжелых механизмов и т. п. С этой точки зрения спасение состоит в

Т а б л и ца 14

Наименование грунта

Состояние грунта

твердое

пластичное

Щебень кристаллических пород

5

--

Щебень осадочных пород

3

--

Пески крупные

4

--

Пески мелкие

2,5

1,5

Пески пылеватые

1,5

1,0

Супесь

2,5

2,0

Суглинок

2,0

1,0

Глина

2,5

1,0

малой высоте фундамента. У 150-миллиметрового телескопа, установленного на жесткой подставке высотой 50 см над поверхностью Земли на расстоянии 200 м от Транссибирской магистрали, вибрация, вызванная проходящими поездами, была не более 2--3". Тот же телескоп, установленный на полу 4 этажа у самой стены, где вибрации пола сведены к минимуму, имел вибрацию 20--30" от поездов, проходящих на расстоянии 1 км. К сожалению, волнение приземных слоев воздуха сильно портит изображения, и это заставляет поднимать телескоп на высоту хотя бы 2-- 3 м от поверхности Земли. Таким образом, в выборе высоты фундамента телескопа любителю всегда приходится идти на компромисс.


 * ЧАСТЬ ТРЕТЬЯ. ВСПОМОГАТЕЛЬНЫЕ ПРИБОРЫ И СПЕЦИАЛЬНЫЕ ТЕЛЕСКОПЫ * 

Едва ли найдется техническое средство, которое принесло астрономии в последние сто лет больше информации, чем фотография. Даже, несмотря на появление электрофотометрии, радиоастрономии и других средств, фотография продолжает занимать основное место среди способов регистрации в астрономии. Поэтому было бы неразумно обходить стороной это средство и любителю. Ведь в отличие от глаза, фотоэмульсия в состоянии накапливать свет от слабых источников, она фиксирует сразу большое число объектов, попадающих и поле зрения телескопа, наконец, она служит надежным документом, тогда как глаз, а правильнее сказать, мозг наблюдателя во время наблюдений очень субъективен.

Фотография, а значит, и фотографические средства должны занять достойное место в арсенале любительских средств. Кроме того, даже и для визуальных наблюдений также стоит кое-что добавить к основному телескопу для расширения наблюдательных возможностей любителя. Этих приспособлений и приборов можно построить довольно много, и любитель-одиночка окажется в затруднительном положении из-за дефицита времени. Поэтому было бы хорошо найти одного или нескольких единомышленников для того, чтобы действовать объединенными усилиями. Коллективу даже начинающих любителей по плечу изготовление описанных ниже приборов и приспособлений. Все это вместе -- уже не просто любитель и телескоп, это астрономическая обсерватория, коллектив, работающий целеустремленно и с большой пользой.

Конечно, при этом встретится больше трудностей организационного порядка: например, где установить построенные приборы; как построить пусть несложное, но все-таки помещение для телескопа; как победить самого лютого врага астрономов XX века -- городское освещение по ночам, которое превратило некогда грандиозную картину мироздания в жалкую ее тень. Одно из возможных решений -- кооперация городских и сельских любителей. У первых больше технических возможностей, у вторых -- хорошее ночное небо. Но даже если обсерватория расположена в городе, например на плоской крыше здания, она принесет гораздо больше удовлетворения ее создателям, чем случайные наблюдения во дворе или на балконе. з 62. СОЛНЕЧНЫЙ ЭКРАН

Поверхностная яркость Солнца слишком велика, чтобы на него можно было смотреть непосредственно в окуляр. Известен случай, когда один из астрономов за несколько секунд ослеп на всю жизнь, наблюдая Солнце в окуляр телескопа. Во многих руководствах рекомендуется использовать темные светофильтры, наподобие тех, что применяются при электросварке. Прежде чем наблюдать с таким стеклом в телескоп, надо сквозь него посмотреть на Солнце без телескопа. Солнце должно быть видно совершенно неярким диском на удивление малых размеров. Однако надо помнить, что наш телескоп собирает слишком много света и тепла, и кусочек стекла помещенный сразу за окуляром в районе выходного зрачка немедленно лопнет, как это однажды случилось у автора книги. Чтобы этого избежать, надо на верхний конец телескопа надеть диафрагму -- крышку из картона или другого материала с неболь