рис.12.2 процедура D10DWD демонстрирует простой способ сложения содержимого одной пары слов (WORD1A и WORD1B) с содержимым второй пары слов (WORD2A и WORD2B) и сохранения суммы в третьей паре слов (WORD3A и WORD3B). Сначала выполняется сложение правых слов: WORD1B BC62 WORD2B 553A Сумма: 1119C Сумма - шест.1119C превышает емкость регистра AX. Переполнение вызывает установку флага переноса в 1. Затем выполняется сложение левых слов, но в данном случае, вместо команды ADD используется команда сложения с переносом ADC (ADd with Carry). Эта команда складывает два значения, и если флаг CF уже установлен, то к сумме прибавляется 1: WORD1A 0123 WORD2A 0012 Плюс перенос 1 Сумма: 0136 При использовании отладчика DEBUG для трассировки арифметических команд можно увидеть эту сумму 0136 в регистре AX, и обpатные значения 3601 в поле WORD3A и 9C11 в поле WORD3B. На рис.12.2 процедура E10DWD демонстрирует подход к сложению значений любой длины. Действие начинается со сложения самых правых слов складываемых полей. В первом цикле складываются правые cлова, во втором - слова, расположенные левее. При этом адреса в регистрах SI, DI и BX уменьшаются на 2. По две команда DEC выполняют эту операцию для каждого регистра. Применять команду SUB reg,02 в данном случае нельзя, т.к. при этом будет очищен флаг переноса, что приведет к искажению результата сложения. Ввиду наличия цикла, используется только одна команда сложения ADC. Перед циклом команда CLC (CLear Carry - очистить флаг переноса) устанавливает нулевое значение флага переноса. Для работы данного метода необходимо: 1) обеспе чить смежность слов, 2) выполнять обработку справа налево и 3) загрузить в регистр CX число складываемых слов. Для многословного вычитания используется команда SBB (SuBtract with Borrow - вычитание с заемом) эквивалентная команде ADC. Заменив в процедуре E10DWD (рис.12.2) команду ADC на SBB, получим процедуру для вычитания. БЕЗЗНАКОВЫЕ И ЗНАКОВЫЕ ДАННЫЕ ------------------------------------------------------------ Ассемблер для IBM PC. Глава 12 265 Многие числовые поля не имеют знака, например, номер абонента, aдрес памяти. Некоторые числовые поля предлагаются всегда положительные, например, норма выплаты, день недели, значение числа ПИ. Другие числовые поля являются знаковые, так как их содержимое может быть положительным или отрицательным. Например, долговой баланс покупателя, который может быть отрицательным при переплатах, или алгебраическое число. Для беззнаковых величин все биты являются битами данных и вместо ограничения +32767 регистр может содержать числа до +65535. Для знаковых величин левый байт является знаковым битом. Команды ADD и SUB не делают разницы между знаковыми и беззнаковыми величинами, они просто складывают и вычитают биты. В следующем примере сложения двух двоичных чисел, первое число содержит единичный левый бит. Для беззнакового числа биты представляют положительное число 249, для знакового - отрицательное число -7: Беззнаковое Знаковое 11111001 249 -7 00000010 2 +2 11111011 251 -5 Двоичное представление результата сложения одинаково для беззнакового и знакового числа. Однако, биты представляют +251 для беззнакового числа и -5 для знакового. Таким одразом, числовое содержимое поля может интерпретироваться по разному. Состояние "перенос" возникает в том случае, когда имеется пеpенос в знаковый разряд. Состояние "переполнение" возника ет в том случае, когда перенос в знаковый разряд не создает переноса из разрядной сетки или перенос из разрядной сетки проиCXодит без переноса в знаковый разряд. При возникновении переноса при сложении беззнаковых чисел, результат получает ся неправильный: Беззнаковое Знаковое CF OF 11111100 252 -4 00000101 5 +5 00000001 1 1 1 0 (неправильно) При возникновении переполнения при сложении знаковых чисел, результат получается неправильный: Беззнаковое Знаковое CF OF 01111001 121 +121 00001011 11 +11 10000100 132 -124 0 1 (неправильно) При операциях сложения и вычитания может одновременно возникнуть и переполнение, и перенос: Ассемблер для IBM PC. Глава 12 266 Беззнаковое Знаковое CF OF 11110110 246 -10 10001001 137 -119 01111111 127 +127 1 1 (неправильно) (неправильно) УМНОЖЕНИЕ ------------------------------------------------------------ Операция умножения для беззнаковых данных выполняется командой MUL, а для знаковых - IMUL (Integer MULtiplication - умножение целых чисел). Ответственность за контроль над форматом обрабатываемых чисел и за выбор подходящей команды умножения лежит на самом программисте. Существуют две основные операции умножения: "Байт на байт". Множимое находится в регистре AL, а множи тель в байте памяти или в однобайтовом регистре. После умножения произведение находится в регистре AX. Операция игнорирует и стиpает любые данные, которые находились в регистре AH. | AH | AL | | AX | До умножения:| |Множимое| После:|Произведение| "Слово на слово". Множимое находится в регистре AX, а мно житель - в слове памяти или в регистре. После умножения произведение находится в двойном слове, для которого требуется два регистра: старшая (левая) часть произведения находится в регистре DX, а младшая (правая) часть в регистре AX. Операция игнорирует и стирает любые данные, которые находились в регистре DX. | AX | | DX || AX | До умножения:|Множимое| После: |Ст.часть||Мл.часть| | Произведение | В единственном операнде команд MUL и IMUL указывается множитель. Рассмотрим следующую команду: MUL MULTR Если поле MULTR определено как байт (DB), то операция предполагает умножение содержимого AL на значение байта из поля MULTR. Если поле MULTR определено как слово (DW), то опереция предполагает умножение содержимого AX на значение слова из поля MULTR. Если множитель находится в регистре, то длина регистра определяет тип операции, как это показанно ниже: MUL CL ;Байт-множитель: множимое в AL, произвед. в AX MUL BX ;Слово-множитель:множимое в AX, произв.в DX:AX Ассемблер для IBM PC. Глава 12 267 Беззнаковое умножение: Команда MUL Команда MUL (MULtiplication - умножение) умножает беззна ковые числа. На рис. 12.3 в процедуре C10MUL дано три примера умножения: байт на байт, слово на слово и слово на байт. Первый пример команды MUL умножает шест.80 (128) на шест.47 (64). Произведение -ш ест.2000 (8192) получается в регистре AX. ------------------------------------------------------------ ------------------------------------------------------------ Рис. 12.3. Беззнаковое и знаковое умножение. Второй пример команды MUL генерирует шест. 10000000 в регистpах DX:AX. Третий пример команды MUL выполняет умножение слова на байт и требует расширение байта BYTE1 до размеров слова. Так как предполагаются беззнаковые величины, то в примере левый бит регистра AH равен нулю. (При использовании команды CBW значение левого бита регистpа AL может быть 0 или 1). Произведение - шест. 00400000 получается в регистрах DX:AX. Знаковое умножение: Команда IMUL Команда IMUL (Integer MULtiplication - умножение целых чисел) умножает знаковые числа. На рис. 12.3 в процедуре D10IMUL используются те же три примера умножения, что и в процедуре C10MUL, но вместо команд MUL записаны команды IMUL. Первый пример команды IMUL умножает шест.80 (отрицатель ное число) на шест.40 (положительное число). Произведение - шест.E000 получается в регистре AX. Используя те же данные, команда MUL дает в результате шест.2000, так что можно видеть разницу в использовании команд MUL и IMUL. Команда MUL рассматривает шест.80 как +128, а команда IMUL - как -128. В результате умножения -128 на +64 получается -8192 или шест.E000. (Попробуйте преобразовать шест.Е000 в десятичный формат). Второй пример команды IMUL умножает шест.8000 (отрицатель ное значение) на шест.2000 (положительное значение). Произведение - шест.F0000000 получается в регистрах DX:AX и представляет собой oтрицательное значение. Третий пример команды IMUL перед умножением выполняет расширение байта BYTE1 до размеров слова в регистре AX. Так как значения предполагаются знаковые, то в примере используется команда CBW для перевода левого знакового бита в регистр AH: шест.80 в pегистре AL превращается в шест.FF80 в регистре AX. Поскольку множитель в слове WORD1 имеет также отрицательное значение, то произведение должно получится положительное. В самом деле: шест.00400000 в Ассемблер для IBM PC. Глава 12 268 регистрах DX:AX - такой же результат, как и в случае умножения командой MUL, которая предполагала положительные сомножители. Таким образом, если множимое и множитель имеет одинаковый знаковый бит, то команды MUL и IMUL генерируют одинаковый результат. Но, если сомножители имеют разные знаковые биты, то команда MUL вырабатывает положительный результат умножения, а команда IMUL - отрицательный. Можно обнаружить это, используя отладчик DEBUG для трассировки примеров. Повышение эффективности умножения: При умножении на степень числа 2 (2,4,8 и т.д.) более эффективным является сдвиг влево на требуемое число битов. Сдвиг более чем на 1 требует загрузки величины сдвига в регистр CL. В следующих примерах предположим, что множимое находится в регистре AL или AX: Умножение на 2: SHL AL,1 Умножение на 8: MOV CL,3 SHL AX,CL Многословное умножение Обычно умножение имеет два типа: "байт на байт" и "слово на слово". Как уже было показано, максимальное знаковое значение в слове ограничено величиной +32767. Умножение больших чисел требует выполнения некоторых дополнительных действий. Рассматриваемый подход предполагает умножение каждого слова отдельно и сложение полученных результатов. Рассмотрим следующее умножение в десятичном формате: 1365 х12 2730 1365 16380 Представим, что десятичная арифметика может умножать только двухзначные числа. Тогда можно умножить 13 и 65 на 12 раздельно, cледующим образом: 13 65 х12 х12 26 130 13 65 156 780 Следующим шагом сложим полученные произведения, но поскольку число 13 представляло сотни, то первое произведение в действительности будет 15600: 15600 Ассемблер для IBM PC. Глава 12 269 +780 16380 Ассемблерная программа использует аналогичную технику за исключением того, что данные имеют размерность слов (четыре цифры) в шестнадцатеричном формате. Умножение двойного слова на слово. Процедура E10XMUL на рис.12.4 умножает двойное слово на слово. Множимое, MULTCND, состоит из двух слов, содержащих соответственно шест. 3206 и шест. 2521. Определение данных в виде двух слов (DW) вместо двойного слова (DD) обусловлено необходимостью правильной адресации для команд MOV, пересылающих слова в регистр AX. Множитель MULTPLR содержит шест. 6400. Область для записи произведения, PRODUCT, состоит из трех слов. Первая команда MUL перемножает MULTPLR и правое cлово поля MULTCND; произведение - шест. 0E80 E400 записывается в PRODUCT+2 и PRODUCT+4. Вторая команда MUL перемножает MULTPLR и левое слово поля MULTCND, получая в результате шест. 138A 5800. Далее выполняется сложение двух произведений следующим образом: Произведение1: 0000 0E80 E400 Произведение 2: 138A 5800 Результат: 138A 6680 E400 Так как первая команда ADD может выработать перенос, то второе cложение выполняется командой сложения с переносом ADC (ADd with Carry). В силу обратного представления байтов в словах в процессоpах 8086/8088, область PRODUCT в действи тельности будет содержать значение 8A13 8066 00E4. Программа предполагает, что первое слово в области PRODUCT имеет начальное значение 0000. ------------------------------------------------------------ ------------------------------------------------------------ Рис.12.4. Многословное умножение. Умножение "двойного слова на двойное слово". Умножение двух двойных слов включает следующие четыре операции умножения: Множимое Множитель слово 2 х слово 2 слово 2 х слово 1 слово 1 х слово 2 слово 1 х слово 1 Каждое произведение в регистрах DX и AX складывается с соответствующим словом в окончательном результате. Пример такого умножения приведен в процедуре F10XMUL на рис. 12.4. Ассемблер для IBM PC. Глава 12 270 Множимое MULTCND содержит шест. 3206 2521, множитель MULTPLR - шест. 6400 0A26. Результат заносится в область PRODUCT, состоящую из четырех слов. Хотя логика умножения двойных слов аналогична умножению двойного слова на слово, имеется одна особенность, после пары команд сложения ADD/ADC используется еще одна команда ADC, которая прибавляет 0 к значению в поле PRODUCT. Это необходимо потому, что первая команда ADC сама может вызвыть перенос, который последующие команды могут стереть. Поэтому вторая команда ADC прибавит 0, если переноса нет, и прибавит 1, если перенос есть. Финальная пара команд ADD/ADC не тредует дополнительной команды ADC, так как область PRODUCT достаточно велика для генерации окончательного результата и переноса на последнем этапе не будет. Окончательный результат 138A 687C 8E5C CCE6 получится в поле PRODUCT в обратной записи байт в словах. Выполните трассировку этого примера с помощью отладчика DEBUG. СДВИГ РЕГИСТРОВОЙ ПАРЫ DX:AX ------------------------------------------------------------ Следующая подпрограмма может быть полезна для сдвига содержимого pегистровой пары DX:AX вправо или влево. Можно придумать более эффективный метод, но данный пример представляет общий подход для любого числа циклов (и, соответственно, сдвигов) в регистре CX. Заметьте, что сдвиг единичного бита за разрядную сетку устанавливает флаг переноса. Сдвиг влево на 4 бита MOV CX,04 ;Инициализация на 4 цикла C20: SHL DX,1 ;Сдвинуть DX на 1 бит влево SHL AX,1 ;Сдвинуть AX на 1 бит влево ADC DX,00 ;Прибавить значение переноса LOOP C20 ;Повторить Сдвиг вправо на 4 бита MOV CX,04 ;Инициализация на 4 цикла D20: SHR AX,1 ;Сдвинуть AX на 1 бит вправо SHR DX,1 ;Сдвинуть DX на 1 бит вправо JNC D30 ;Если есть перенос, OR AH,10000000B ; то вставить 1 в AH D30: LOOP D20 ;Повторить Ниже приведен более эффективный способ для сдвига влево, не требующий организации цикла. В этом примере фактор сдвига записывается в регистр CL. Пример написан для сдвига на 4 бита, но может быть адаптирован для других величин сдвигов: MOV CL,04 ;Установить фактор сдвига SHL DX,CL ;Сдвинуть DX влево на 4 бита MOV BL,AH ;Сохранить AH в BL SHL AX,CL ;Сдвинуть AX влево на 4 бита SHL BL,CL ;Сдвинуть BL вправо на 4 бита Ассемблер для IBM PC. Глава 12 271 OR DL,BL ;Записать 4 бита из BL в DL ДЕЛЕНИЕ ------------------------------------------------------------ Операция деления для беззнаковых данных выполняется командой DIV, a для знаковых - IDIV. Ответственность за подбор подходящей команды лежит на программисте. Существуют две основные операции деления: Деление "слова на байт". Делимое находится в регистре AX, а делитель - в байте памяти или а однобайтовом регистре. После деления остаток получается в регистре AH, а частное - в AL. Так как однобайтовое частное очень мало (максимально +255 (шест.FF) для беззнакового деления и +127 (шест.7F) для знакового), то данная операция имеет ограниченное использование. | AX | | AH | AL | До деления: | Делимое| После: |Остаток|Частное| Деление "двойного слова на слово". Делимое находится в регистровой паре DX:AX, а делитель - в слове памяти или а регистре. После деления остаток получается в регистре DX, а частное в регистре AX. Частное в одном слове допускает максимальное значение +32767 (шест.FFFF) для беззнакового деления и +16383 (шест.7FFF) для знакового. | DX || AX | | AH || AL | До деления:|Ст.часть||Мл.часть| После:|Остаток||Частное| | Делимое | В единственном операнде команд DIV и IDIV указывается делитель. Рассмотрим следующую команду: DIV DIVISOR Если поле DIVISOR определено как байт (DB), то операция предполагает деление слова на байт. Если поле DIVISOR определено как слово (DW), то операция предполагает деление двойного слова на слово. При делении, например, 13 на 3, получается разельтат 4 1/3. Частное есть 4, а остаток - 1. Заметим, что ручной калькулятор (или программа на языке BASIC) выдает в этом случае результат 4,333.... Значение содержит целую часть (4) и дробную часть (,333). Значение 1/3 и 333... есть дробные части, в то время как 1 есть остаток от деления. Беззнаковое деление: Команда DIV Команда DIV делит беззнаковые числа. На рис.12.5 в процедуре D10DIV дано четыре примера деления: слово на байт, байт на байт, двойное слово на слово и слово на слово. Ассемблер для IBM PC. Глава 12 272 Первый пример команды DIV делит шест.2000 (8092) на шест.80 (128). В результате остаток 00 получается в регистре AH, а частное шест.40 (64) - в регистре AL. Второй пример команды DIV выполняет прежде расширение байта BYTE1 до размеров слова. Так как здесь предполагается беззнаковая величина, то в примере левый бит регистра AH равен нулю. В результате деления остаток - шест. 12 получает ся в регистре AH, а частное шест.05 - в регистре AL. Третий пример команды DIV генерирует остаток шест. 1000 в регистре DX и частное шест. 0080 в регистре AX. В четвертом примере команды DIV сначала выполняется расширение слова WORD1 до двойного слова в регистре DX. После деления остаток шест.0000 получится в регистре DX, а частное шест. 0002 - в регистре AX. ------------------------------------------------------------ ------------------------------------------------------------ Рис.15.5. Беззнаковое и знаковое деление. Знаковое деление: Команда IDIV Команда IDIV (Integer DIVide) выполняет деление знаковых чисел. На рис.12.5 в процедуре E10IDIV используются те же четыре примера деления, что и в процедуре D10DIV, но вместо команд DIV записаны команды IDIV. Первый пример команды IDIV делит шест.2000 (положительное число) на шест.80 (отри цательное число). Остаток от деления - шест. 00 получается в регистре AH , а частное - шест. C0 (-64) - в регистре AL. Команда DIV, используя те же числа, генерирует частное +64. Шестнадцатиричные результаты трех остальных примеров деления приведены ниже: Пример команды IDIV Остаток Частное 2 EE (-18) FB (-5) 3 1000 (4096) 0080 (128) 4 0000 0002 Только в примере 4 вырабатывается такой же результат, что и для команды DIV. Таким образом, если делимое и делитель имеют одинаковый знаковый бит, то команды DIV и IDIV генерируют одинаковый pезультат. Но, если делимое и делитель имеют разные знаковые биты, то команда DIV генерирует положи тельное частное, а команда IDIV - отрицательное частное. Можно обнаружить это, используя отладчик DEBUG для трасси ровки этих примеров. Повышение производительности. При делении на степень числа 2 (2, 4, и т.д.) более эффективным является сдвиг вправо на требуемое число битов. В следующих примерах предположим, что делимое находится в регистре AX: Деление на 2: SHR AX,1 Ассемблер для IBM PC. Глава 12 273 Деление на 8: MOV CL,3 SHR AX,CL Переполнения и прерывания Используя команды DIV и особенно IDIV, очень просто вызвать пеpеполнение. Прерывания приводят (по крайней мара в системе, используемой при тестировании этих программ) к непредсказуемым результатам. В операциях деления предполага ется, что частное значительно меньше, чем делимое. Деление на ноль всегда вызывает прерывание. Но деление на 1 генерирует частное, которое равно делимому, что может также легко вызвать прерывание. Рекомендуется использовать следующее правило: если делитель - байт, то его значение должно быть меньше, чем левый байт (AH) делителя: если делитель - слово, то его значение должно быть меньше, чем левое слово (DX) делителя. Проиллюстрируем данное правило для делителя, равного 1: Операция деления: Делимое Делитель Частное Слово на байт: 0123 01 (1)23 Двойное слово на слово: 0001 4026 0001 (1)4026 В обоих случаях частное превышает возможный размер. Для того чтобы избежать подобных ситуаций, полезно вставлять перед командами DIV и IDIV соответствующую проверку. В первом из следующих примеpов предположим, что DIVBYTE - однобайтовый делитель, а делимое находится уже в регистре AX. Во втором примере предположим, что DIVWORD - двухбайтовый делитель, а делимое находится в регистровой паре DX:AX. Слово на байт Двойное слово на байт CMP AH,DIVBYTE CMP DX,DIVWORD JNB переполнение JNB переполнение DIV DIVBYTE DIV DIVWORD Для команды IDIV данная логика должна учитывать тот факт, что либо делимое, либо делитель могут быть отрицательными, а так как сравниваются абсолютные значения, то необходимо использовать команду NEG для временного перевода отрицательного значения в положительное. Деление вычитанием Если частное слишком велико, то деление можно выполнить с помощью циклического вычитания. Метод заключается в том, что делитель вычитается из делимого и в этом же цикле частное увеличивается на 1. Вычитание продолжается, пока делимое остается больше делителя. В cледующем примере, делитель находится в регистре AX, а делимое - в BX, частное вырабатывается в CX: Ассемблер для IBM PC. Глава 12 274 SUB CX,CX ;Очистка частного C20: CMP AX,BX ;Если делимое < делителя, JB C30 ; то выйти SUB AX,BX ;Вычитание делителя из делимого INC CX ;Инкремент частного JMP C20 ;Повторить цикл С30: RET ;Частное в CX, остаток в AX В конце подпрограммы регистр CX будет содержать частное, а AX - oстаток. Пример умышленно примитивен для демонстрации данной техники деления. Если частное получается в регистро вой паре DX:AX, то необходимо сделать два дополнения: 1. В метке C20 сравнивать AX и BX только при нулевом DX. 2. После команды SUB вставить команду SBB DX,00. Примечание: очень большое частное и малый делитель могут вызвать тысячи циклов. ПРЕОБРАЗОВАНИЕ ЗНАКА ------------------------------------------------------------ Команда NEG обеспечивает преобразование знака двоичных чисел из положительного в отрицательное и наоборот. Практически команда NEG устанавливает противоположные значения битов и прибавляет 1. Примеры: NEG AX NEG BL NEG BINAMT (байт или слово в памяти) Преобразование знака для 35-битового (или большего) числа включает больше шагов. Предположим, что регистровая пара DX:AX содержит 32-битовое двоичное число. Так как команда NEG не может обрабатывать два регистра одновременно, то ее использование приведет к неправильному результату. В следую щем примере показано использование команды NOT: NOT DX ;Инвертирование битов NOT AX ;Инвертирование битов ADD AX,1 ;Прибавление 1 к AX ADC DX,0 ;Прибавление переноса к DX Остается одна незначительная проблема: над числами, представленными в двоичном формате, удобно выполнять арифме тические операции, если сами числа определены в программе. Данные, вводимые в программу с дискового файла, могут также иметь двоичный формат. Но данные, вводимые с клавиатуры, представленны в ASCII-формате. Хотя ASCII-коды удобны для отображения и печати, они требуют специальных преобразований в двоичный формат для арифметических вычислений. Но это уже тема следующей главы. Ассемблер для IBM PC. Глава 12 275 ПРОЦЕССОРЫ INTEL 8087 И 80287 ДЛЯ ОБРАБОТКИ ЧИСЛОВЫХ ДАННЫХ ------------------------------------------------------------ Системная плата компьютера содержит пустое гнездо, зарезервированное для числового процессора Intel 8087 (или 80287). Сопроцессор 8087 действует совместно с 8088, а сопро цессор 80287 действует совместно с 80286. Каждый сопроцессор имеет собственный набор команд и средства для операций с плавающей запятой для выполнения экспоненциальных, логарифмических и тригонометрических функций. Сопроцессор содержит восемь 80-битовых регистров с плавающей запятой, которые могут представить числовые значения до 10 в 400 сте пени. Математические вычисления в сопроцессоре выполняются примерно в 100 раз быстрее, чем в основном процессоре. Основной процессор выполняет специальные операции и передает числовые данные в сопроцессор, который выполняет необходимые вычисления и возвращает результат. Для ассембли рования с помощью транслятора MASM, необходимо добавлять параметр /E или /R, например, MASM /R. ОСНОВНЫЕ ПОЛОЖЕНИЯ НА ПАМЯТЬ ------------------------------------------------------------ ъ Будьте особенно внимательны при использовании однобайто вых pегистров. Знаковые значения здесь могут быть от -128 до +127. ъ Для многословного сложения используйте команду ADC для учета переносов от предыдущих сложений. Если операция выполняется в цикле, то используя команду CLC, установите флаг переноса в 0. ъ Используйте команды MUL или DIV для беззнаковых данных и команды IMUL или IDIV для знаковых. ъ При делении будьте осторожны с переполнениями. Если нулевой делитель возможен, то обеспечьте проверку этой операции. Кроме того, делитель должен быть больше содержимого регистра AH (для байта) или DX (для слова). ъ Для умножения или деления на степень двойки используйте cдвиг. Сдвиг вправо выполняется командой SHR для беззна ковых полей и командой SAR для знаковых полей. Для сдвига влево используются идентичные команды SHL и SAL. ъ Будьте внимательны при ассемблировании по умолчанию. Например, если поле FACTOR определено как байт (DB), то команда MUL FACTOR полагает множимое в регистре AL, а команда DIV FACTOR полагает делимое в регистре AX. Если FACTOR определен как слово (DW), то команда MUL FACTOR полагает множимое в регистре AX, а команда DIV FACTOR полагает делимое в регистровой паре DX:AX. Ассемблер для IBM PC. Глава 12 276 ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ ------------------------------------------------------------ Все вопросы имеют отношение к следующим данным: DATAX DW 0148H DW 2316H DATAY DW 0237H DW 4052H 12.1. Закодируйте команды для сложения а) слова DATAX со словом DATAY; б) двойного слова, начинающегося по адресу DATAX, с двойным словом в DATAY. 12.2. Объясните действие следующих команд: STC MOV BX,DATAX ADC BX,DATAY 12.3. Закодируйте команды для умножения (MUL): а) слова DATAX на слово DATAY; б) двойного слова , начинающего ся по адресу DATAX, на слово DATAY. 12.4. Какой делитель, кроме нуля, вызывает ошибку переполнения? 12.5. Закодируйте команды для деления (DIV): а) слова DATAX на 23; б) двойного слова, начинающегося по адресу DATAX, на слово DATAY. 12.6. Последний пример в разделе "Сдвиг регистроврй пары DX:AX" является более эффективным по сравнению с предыдущими примерами для сдвига влево на четыре бита. Измените пример для сдвига вправо на четыре бита. Ассемблер для IBM PC. Глава 13 1 ГЛАВА 13. Арифметические операции II: ------------------------------------------------------------ Арифметические операции II: Обработка данных в форматах ASCII и BCD Цель: Рассмотреть ASCII и BCD форматы данных и дать сведения о преобразованиях между этими форматами и двоичным форматом. ВВЕДЕНИЕ ------------------------------------------------------------ Для получения высокой производительности компьютер выполняет aрифметические операции над числами в двоичном формате. Как показано в главе 12, этот формат не вызывает особых трудностей, если данные определены в самой программе. Во многих случаях новые данные вводятся программой с клавиатуры в виде ASCII символов в деcятичном формате. Аналогично вывод информации на экран осуществляется в кодах ASCII. Например, число 23 в двоичном представлении выглядит как 00010111 или шест.17; в коде ASCII на каждый cимвол требуется один байт и число 25 в ASCII-коде имеет внутpеннее представление шест.3235. Назначение данной главы - показать технику преобразования данных из ASCII-формата в двоичный формат для выполнения арифметических операций и обратного преобразования двоичных результатов в ASCII-формат для вывода на экран или принтер. Программа, приведенная в конце главы , демонстрирует большую часть матеpиала от главы 1 до главы 12. При программировании на языках высокого уровня, таких как BASIC или Pascal, для обозначения порядка числа или положе ния десятичной запятой (точки) можно положиться на кампилятор. Однако, компьютер не распознает десятичную запятую (точку) в арифметических полях. Так как двоичные числа не имеют возможности установки десятичной (или двоичной) запятой (точки), то именно программист должен подразумевать и определить порядок обрабатываемых чисел. ASCII-формат ------------------------------------------------------------ Данные, вводимые с клавиатуры, имеют ASCII-формат, например, буквы SAM имеют в памяти шестнадцатиричное представление 53414D, цифры 1234 - шест. 31323334. Во многих случаях формат алфавитных данных, например, имя человека или описание статьи, не меняется в программе. Но для выполнения арифметических операций над числовыми значениями, такими как шест. 31323334, требуется специальная обработка. С помощью следующих ассемблерных команд можно выполнять арифметические операции непосредственно над числами в ASCII-формате: Ассемблер для IBM PC. Глава 13 2 AAA (ASCII Adjust for Addition - коррекция для сложения ASCII-кода) AAD (ASCII Adjust for Division - коррекция для деления ASCII-кода) AAM (ASCII Adjust for Multiplication - коррекция для умножения ASCII-кода) AAS (ASCII Adjust for Subtraction - коррекция для вычитания ASCII-кода) Эти команды кодируются без операндов и выполняют автоматичес кую коррекцию в регистре AX. Коррекция необходима, так как ASCII код представляет так называемый распакованный десятичный формат, в то время, как компьютер выполняет арифметические операции в двоичном формате. Сложение в ASCII-формате Рассмотрим процесс сложения чисел 8 и 4 в ASCII-формате: Шест. 38 34 Шест. 6C Полученная сумма неправильна ни для ASCII-формата, ни для двоичного формата. Однако, игноригуя левую 6 и прибавив 6 к правой шест.C: шест.C + 6 = шест.12 - получим правильный результат в десятичном формате. Правильный пример слегка упрощен, но он хорошо демонстрирует процесс, который выполня ет команда AAA при коррекции. В качестве примера, предположим, что регистр AX содержит шест. 0038, а регистр BX - шест.0034. Числа 38 и 34 представляют два байта в ASCII формате, которые необходимо сложить. Сложение и коррекция кодируется следующими командами: ADD AL,BL ;Сложить 34 и 38 AAA ;Коррекция для сложения ASCII кодов Команда AAA проверяет правую шест. цифру (4 бита) в регистре AL. Если эта цифра находится между A и F или флаг AF равен 1, то к регистру AL прибавляется 6, а к регистру AH прибавляется 1, флаги AF и CF устанавливаются в 1. Во всех случаях команда AAA устанавливает в 0 левую шест. цифру в регистре AL. Результат - в регистре AX: После команды ADD: 006C После команды AAA: 0102 Для того, чтобы выработать окончательное ASCII-представ ление, достаточно просто поставить тройки на место левых шест. цифр: OR AX,3030H ;Результат 3132 Ассемблер для IBM PC. Глава 13 3 Все показанное выше представляет сложение однобайтовых чисел. Сложение многобайтовых ASCII-чисел требует организа ции цикла, который выполняет обработку справа налево с учетом переноса. Пример , показанный на рис.13.1 складывает два трехбайтовых ASCII-числа в четырехбайтовую сумму. Обратите внимание на следующее: ъ В программе используется команда ADC, так как любое сложение может вызвать перенос, который должен быть прибавлен к следующему (слева) байту. Команда CLC устанавливает флаг CF в нулевое состояние. ------------------------------------------------------------ ------------------------------------------------------------ Рис. 13.1. Сложение в ASCII-формате. ъ Команда MOV очищает регистр AH в каждом цикле, так как команда AAA может прибавить к нему единицу. Команда ADC учитывает пеpеносы. Заметьте, что использование команд XOR или SUB для oчистки регистра AH изменяет флаг CF. ъ Когда завершается каждый цикл, происходит пересылка содержимого pегистра AH (00 или 01) в левый байт суммы. ъ В результате получается сумма в виде 01020702. Програм ма не использует команду OR после команды AAA для занесения левой тройки, так как при этом устанавливает ся флаг CF, что изменит pезультат команды ADC. Одним из решений в данном случае является сохранение флагового регистра с помощью команды PUSHF, выполнение команды OR, и, затем, восстановление флагового регистра командой POPF: ADC AL,[DI] ;Сложение с переносом AAA ;Коррекция для ASCII PUSHF ;Сохранение флагов OR AL,30H ;Запись левой тройки POPF ;Восстановление флагов MOV [BX],AL ;Сохранение суммы Вместо команд PUSHF и POPF можно использовать команды LAHF (Load AH with Flags - загрузка флагов в регистр AH) и SAHF (Store AH in Flag register - запись флагов из регистра AH во флаговый регистр). Команда LAHF загружает в регистр AH флаги SF, ZF, AF, PF и CF; а команда SAHF записывает содержимое регистра AH в указанные флаги. В приведенном примере, однако, регистр AH уже используется для арифметических переполнений. Другой способ вставки троек для получения ASCII-кодов цифр - организовать обработку суммы командой OR в цикле. Вычитание в ASCII-формате Ассемблер для IBM PC. Глава 13 4 Команда AAS (ASCII Adjust for Subtraction - коррекция для вычитания ASCII-кодов) выполняется aналогично команде AAA. Команда AAS проверяет правую шест.цифру (четыре бита) в регистре AL. Если эта цифра лежит между A и F или флаг AF равен 1, то из регистра AL вычитается 6, а из регистра AH вычитается 1, флаги AF и CF устанавливаются в 1. Во всех случаях команда AAS устанавливает в 0 левую шест.цифру в регистpе AL. В следующих двух примерах предполагается, что поле ASC1 содержит шест.38, а поле ASC2 - шест.34: Пример 1: AX AF MOV AL,ASC1 ;0038 SUB AL,ASC2 ;0034 0 AAS ;0004 0 Пример 2: AX AF MOV AL,ASC2 ;0034 SUB AL,ASC1 ;00FC 1 AAS ;FF06 1 В примере 1 команде AAS не требуется выполнять коррекцию. В примере 2, так как правая цифра в регистре AL равна шест.C, команда AAS вычитает 6 из регистра AL и 1 из регистра AH и устанавливает в 1 флаги AF и CF. Результат (который должен быть равен -4) имеет шест. представление FF06, т.е. десятич ное дополнение числа -4. Умножение в ASCII-формате Команда AAM (ASCII Adjust for Multiplication - коррекция для умножения ASCII кодов) выполняет корректировку результата умножения ASCII кодов в регистре AX. Однако, шест. цифры должны быть очищены от троек и полученные данные уже не будут являться действительными ASCII-кодами. (В руководствах фирмы IBM для таких данных используется термин pаспакованный десятичный формат). Например, число в ASCII-формате 31323334 имеет распакованное десятичное представление 01020304. Кроме этого, надо помнить, что коррекция осуществляется только для одного байта за одно выполнение, поэтому можно умножать только oдно-байтовые поля; для более длинных полей необходима организация цикла. Команда AAM делит содержимое регистра AL на 10 (шест. 0A) и записывает частное в регистр AH, а остаток в AL. Предположим, что в регистре AL содержится шест. 35, а в регистре CL - шест.39. Следующие команды умножают содержимое регистра AL на содержимое CL и преобразуют результат в ASCII-формат: AX: AND CL,0FH ;Преобразовать CL в 09 AND AL,0FH ;Преобразовать AL в 05 0005 MUL CL ;Умножить AL на CL 002D Ассемблер для IBM PC. Глава 13 5 AAM ;Преобразовать в распак.дес. 0405 OR AX,3030H ;Преобразовать в ASCII-ф-т 3435 Команда MUL генерирует 45 (шест.002D) в регистре AX, после чего команда AAM делит это значение на 10, записывая частное 04 в регистр AH и остаток 05 в регистр AL. Команда OR преоб pазует затем распакованное десятичное число в ASCII-фор