нительных ухищрений следить за тем "откуда дует ветер", что весьма существенно для приземных рыскающих потоков. Ветродвигатели подобного типа строятся в США, Японии, Англии, ФРГ, Канаде. Карусельный лопастный ветродвигатель наиболее прост в эксплуатации. Его конструкция обеспечивает максимальный момент при запуске ветродвигателя и автоматическое саморегулирование максимальной скорости вращения в процессе работы. С увеличением нагрузки уменьшается скорость вращения и возрастает вращающий момент вплоть до полной остановки. Ортогональные Ортогональные ветроагрегаты, как полагают специалисты, перспективны для большой энергетики. Сегодня перед ветропоклонниками ортогональных конструкций стоят определенные трудности. Среди них, в частности, проблема запуска. В ортогональных установках используется тот же профиль крыла, что и в дозвуковом самолете (см. рис. p066 (6)). Самолет, прежде чем "опереться" на подъемную силу крыла, должен разбежаться. Так же обстоит дело и в случае с ортогональной установкой. Сначала к ней нужно подвести энергию -- раскрутить и довести до определенных аэродинамических параметров, а уже потом она сама перейдет из режима двигателя в режим генератора. Отбор мощности начинается при скорости ветра около 5 м/с, а номинальная мощность достигается при скорости 14...16 м/с. Предварительные расчеты ветроустановок предусматривают их использование в диапазоне от 50 до 20 000 кВт. В реалистичной установке мощностью 2000 кВт диаметр кольца, по которому движутся крылья, составит около 80 метров. У мощного ветродвигателя большие размеры. Однако можно обойтись и малыми -- взять числом, а не размером. Снабдив каждый электрогенератор отдельным преобразователем (см. гл. 3.5) можно просуммировать выходную мощность вырабатываемую генераторами. В этом случае повышается надежность и живучесть ветроустановки. Неожиданные проявления и применения Реально работающие ветроагрегаты обнаружили ряд отрицательных явлений. Например, распространение ветрогенераторов может затруднить прием телепередач и создавать мощные звуковые колебания. Появление экспериментального ветродвигателя на Оркнейских островах (Англия) в 1986 году вызвало многочисленные жалобы от телезрителей ближайших населенных пунктов [16]. В итоге около ветростанции был построен телевизионный ретранслятор. Лопасти крыльчатой ветряной турбины были выполнены из стеклопластика, который не отражает и не поглощает радиоволны. Помехи создавал стальной каркас лопастей и имеющиеся на них металлические полоски, предназначенные для отвода ударов молний. Они отражали и рассеивали ультракоротковолновый сигнал. Отраженный сигнал смешивался с прямым, идущим от передатчика, и создавал на экранах помехи. Построенная в 1980 году в городке Бун (США) ветроэлектростанция, дающая 2 тысячи киловатт, действовала безотказно, но вызывала нарекания жителей городка. Во время работы ветряка в окнах дребезжали стекла и звенела посуда на полках [17]. Было установлено, что шестидесятиметровый винт при определенной скорости вращения издавал инфразвук. Он не ощущается человеческим ухом, но вызывает низкочастотные колебания предметов и небезопасен для человека. После доработки лопастей от инфразвуковых колебаний удалось избавиться. Ветродвигатели могут не только вырабатывать энергию. Способность привлекать внимание вращением без расходования энергии используется для рекламы. Наиболее простой -- однолопастный карусельный ветродвигатель представляет собой прямоугольную пластинку с отогнутыми краями (рис. p092). Закрепленный на стене он начинает вращаться даже при незначительном ветре. На большой площади крыльев карусельный трех-четырех лопастный ветродвигатель может вращать рекламные плакаты и небольшой генератор. Запасенная в аккумуляторе электроэнергия может освещать крылья с рекламой в ночное время, а в безветренную погоду и вращать их. Список литературы 1. Наука и жизнь, No1, 1991 г. М.: Правда. 2. Техника молодежи, No5, 1990 г. 3. Феликс Р. Патури Зодчие ХХI века М.: ПРОГРЕСС, 1979. 345 с. 4. Наука и жизнь, No10, 1986 г. М.: Правда. 5. Багоцкий В.С., Скундин А.М. Химические источники тока М.: Энергоиздат, 1981. 360 с. 6. Коровин Н.В. Новые химические источники тока М.: Энергия, 1978. 194 с. 7. Д-р Дитрих Берндт Конструкторский уровень и технические границы применения герметичных батарей А/О ВАРТА Беттери Научно-исследовательский центр 8. Лаврус В.С. Батарейки и аккумуляторы К.: Наука и техника, 1995. 48 с. 9. Наука и жизнь, No5...7, 1981 г. М.: Правда. 10. Мурыгин И.В. Электродные процессы в твердых электролитах М.: Наука, 1991. 351 с. 11. The Power Protection Handbook American Power Conversion 12. Шульц Ю. Электроизмерительная техника 1000 понятий для практиков М.: Энергоиздат, 1989. 288 с. 13. Наука и жизнь, No11, 1991 г. М.: Правда. 14. Ю. С. Крючков, И. Е. Перестюк Крылья Океана Л.: Судостроение, 1983. 256 с. 15. В. Брюхань. Ветроэнергетический потенциал свободной атмосферы над СССР Метрология и гидрология. No6, 1989 г. 16. New scientist No1536, 1986 г. 17. Daily Telegraf, 25.09.1986 г. Page 56 Page 7 Printed 12/14/97, 6:53 PM Page 1