\input style \proof pREDPOLOZHIM, CHTO V ZDANII IMEETSYA DOPOLNITELXNO $b$~CHELOVEK; PERVONACHALXNO ONI NAHODYATSYA V LIFTE, I |TAZH IH NAZNACHENIYA ISKUSSTVENNO POLAGAETSYA NULEVYM. lIFT MOZHET FUNKCIONIROVATX V SOOTVETSTVII SO SLEDUYUSHCHIM ALGORITMOM, NACHINAYA S~$k$ (TEKUSHCHIJ |TAZH), RAVNOGO~$1$. \picture{rYAS. 87. aLGORITM kARPA DLYA LIFTA.} % !!! v KNIGE NET ZAGOLOVKA \alg K.(aLGORITM kARPA DLYA LIFTA) \st[dVIZHENIE VVERH.] iZ $b+c$~LYUDEJ, NAHODYASHCHIHSYA V DANNYJ MOMENT V LIFTE I NA |TAZHE~$k$, TOLXKO~$b$, IMEYUSHCHIE SAMOE VYSOKOE MESTO NAZNACHENIYA, POPADAYUT V LIFT, OSTALXNYE OSTAYUTSYA NA |TAZHE~$k$. pUSTX TEPERX V LIFTE NAHODYATSYA $u$~CHELOVEK S NAZNACHENIEM~$>k$ I~$d$ S NAZNACHENIEM~$\le k$. (oKAZHETSYA, CHTO~$u=\min (b, u_k)$; ESLI~$u_k0$, VERNUTXSYA K SHAGU~\stp{1}. \st[dVIZHENIE VNIZ.] iZ $b+c$~LYUDEJ, NAHODYASHCHIHSYA V DANNYJ MOMENT V LIFTE ILI NA |TAZHE~$k$, TOLXKO~$b$, IMEYUSHCHIE SAMOE NIZKOE MESTO NAZNACHENIYA, POPADAYUT V LIFT, OSTALXNYE OSTAYUTSYA NA |TAZHE~$k$. pUSTX TEPERX V LIFTE NAHODYATSYA $u$~CHELOVEK S NAZNACHENIEM~$\ge k$ I~$d$ S NAZNACHENIEM~$1$ I~$u_{k-1}>0$, VERNUTXSYA K SHAGU~\stp{3}. eSLI~$k=1$ I~$u_1=0$, ZAKONCHITX ALGORITM (VSE LYUDI DOSTAVLENY NA SVOE MESTO NAZNACHENIYA, A $b$~"DOPOLNITELXNYH" LYUDEJ SNOVA NAHODYATSYA V LIFTE). v PROTIVNOM SLUCHAE VERNUTXSYA K SHAGU~\stp{2} \algend nA RIS.~88 POKAZAN PRIMER RABOTY |TOGO ALGORITMA DLYA ZDANIYA S DEVYATXYU |TAZHAMI I~$b=3$, $c=2$. zAMETIM, CHTO ODNA IZ SHESTEROK VREMENNO PEREMESHCHAETSYA OT SVOEGO MESTA NAZNACHENIYA, NESMOTRYA NA TO CHTO LIFT PROHODIT MINIMALXNO VOZMOZHNOE %%426 RASSTOYANIE. pROVERKA~$u_{k-1}$ NA SHAGE~K4 YAVLYAETSYA, KAK MY UVIDIM, RESHAYUSHCHIM MOMENTOM DLYA PRAVILXNOJ RABOTY ALGORITMA. chTOBY PROVERITX PRAVILXNOSTX |TOGO ALGORITMA, ZAMETIM, CHTO SHAGI~K1 I~K3 VSEGDA PODDERZHIVAYUT MASSIVY~$u$ I~$d$ V SOOTVETSTVII S TEKUSHCHIM POLOZHENIEM, ESLI SCHITATX LYUDEJ V LIFTE NAHODYASHCHIMISYA NA TEKUSHCHEM |TAZHE~$k$. tEPERX MOZHNO DOKAZATX PO \picture{rIS.~88. oPTIMALXNYJ SPOSOB PERERASPREDELENIYA LYUDEJ PRI POMOSHCHI NEBOLXSHOGO MEDLENNOGO LIFTA. (kAZHDYJ CHELOVEK PREDSTAVLEN NOMEROM |TAZHA, NA KOTORYJ ON NAPRAVLYAETSYA.) } INDUKCII, CHTO V NACHALE KAZHDOGO SHAGA IMEYUT MESTO SLEDUYUSHCHIE SVOJSTVA: $$ \displaylinesno{ u_l=d_{l+1} \rem{PRI $k\le l < n$;} & (6) \cr u_l=d_{l+1}-b \rem{PRI $1\le l < k$;} & (7) \cr \hbox{ESLI } u_l=0 \hbox{ I } k\le l < n, \hbox{ TO } u_{l+1}=0. & (8) \cr } $$ kROME TOGO, V NACHALE SHAGA~K1 V LIFTE ILI NA |TAZHE~$k$ NAHODYATSYA $\min(u_k, b)$~CHELOVEK S NAIVYSSHIMI NAZNACHENIYAMI SREDI VSEH LYUDEJ NA |TAZHAH~$\le k$ S NAZNACHENIYAMI~$>k$. v NACHALE SHAGA~K3 V LIFTE ILI NA |TAZHE~$k$ NAHODYATSYA $\min(d_k, b)$~CHELOVEK S NAINIZSHIMI NAZNACHENIYAMI SREDI VSEH LYUDEJ NA |TAZHAH~$\ge k$ S NAZNACHENIYAMI~$0$, MY IMEEM "NESVYAZNUYU" SITUACIYU; LIFT DOLZHEN PODNYATXSYA DO |TAZHA~$k+1$, CHTOBY PEREMESTITX LYUDEJ VVERH, HOTYA NIKOMU NE NUZHNO PEREEZZHATX S |TAZHEJ~$\le k$ NA |TAZHI~$\ge k+1$. He POSTUPAYASX OBSHCHNOSTXYU, MOZHNO SCHITATX~$u_{n-1}>0$; TOGDA LYUBOJ PRAVILXNYJ GRAFIK DOLZHEN VKLYUCHATX PO KRAJNEJ MERE $$ 2 \sum_{1\le k < n} \max (1, \ceil{u_k/b}) \eqno (9) $$ DVIZHENIJ, TAK KAK MY TREBUEM, CHTOBY LIFT VERNULSYA NA PERVYJ |TAZH. gRAFIK, DLYA KOTOROGO DOSTIGAETSYA |TA NIZHNYAYA GRANICA, LEGKO SOSTAVITX (UPR.~4). \excercises \ex[17] v METODE PUZYRXKA $P\hbox{-GO}$~PORYADKA, OBSUZHDAVSHEMSYA V TEKSTE, ISPOLXZUETSYA TOLXKO PRYAMOE CHTENIE I PEREMOTKA. mOZHNO LI MODIFICIROVATX ALGORITM TAK, CHTOBY IZVLECHX PREIMUSHCHESTVA IZ \emph{OBRATNOGO} CHTENIYA? \ex[m26] nAJDITE YAVNYE VYRAZHENIYA V ZAMKNUTOM VIDE DLYA CHISEL~$X_n$, $Y_n$, OPREDELENNYH V~(3). [\emph{uKAZANIE:} IZUCHITE RESHENIE URAVNENIYA~(5.2.2-19).] \ex[38] sUSHCHESTVUET LI METOD SORTIROVKI S DVUMYA LENTAMI, OSNOVANNYJ TOLXKO NA SRAVNENII KLYUCHEJ (A NE NA SVOJSTVAH CIFR), DLYA KOTOROGO V NAIHUDSHEM SLUCHAE PRI SORTIROVKE $N$~ZAPISEJ PEREMESHCHENIE LENT SOSTAVLYAET~$O(N\log N)$? [pRI BYSTROJ SORTIROVKE |TO ZNACHENIE DOSTIGAETSYA V SREDNEM, NO NE V NAIHUDSHEM SLUCHAE, A V METODE hENNI I~sTIRNZA (RIS.~86) ONO RAVNYAETSYA~$O(N(\log N)^2)$.] \ex[m23] v ZADACHE O LIFTE PREDPOLOZHIM, CHTO IMEYUTSYA INDEKSY~$p$, $q$, PRICHEM~$q\ge p+2$, $u_p>0$, $u_q>0$ I~$u_{p+1}=\cdots=u_{q-1}=0$. oB®YASNITE, KAK SOSTAVITX GRAFIK, TREBUYUSHCHIJ NE BOLEE (9)~EDINIC VREMENI. \rex[m23] vERNO LI SLEDUYUSHCHEE UTVERZHDENIE? pOSLE SHAGA~K1 ALGORITMA TEOREMY~k NIKTO V LIFTE NE STREMITSYA POPASTX NA BOLEE NIZKIJ |TAZH, CHEM NEKTO IZ OSTAVSHIHSYA NA |TAZHAH~$