we should give it back to them. But this theory doesn't take into account the real reason for the differences between countries -- that is, the development of new techniques for growing food, the development of machinery to grow food and to do other things, and the fact that all this machinery requires the concentration of capital. It isn't the stuff, but the power to make the stuff, that is important. But I realize now that these people were not in science; they didn't understand it. They didn't understand technology; they didn't understand their time. The conference made me so nervous that a girl I knew in New York had to calm me down. "Look," she said, "you're shaking! You've gone absolutely nuts! Just take it easy, and don't take it so seriously. Back away a minute and look at what it is." So I thought about the conference, how crazy it was, and it wasn't so bad. But if someone were to ask me to participate in something like that again, I'd shy away from it like mad -- I mean zero! No! Absolutely not! And I still get invitations for this kind of thing today. When it came time to evaluate the conference at the end, the others told how much they got out of it, how successful it was, and so on. When they asked me, I said, "This conference was worse than a Rorschach test: There's a meaningless inkblot, and the others ask you what you think you see, but when you tell them, they start arguing with you!" Even worse, at the end of the conference they were going to have another meeting, but this time the public would come, and the guy in charge of our group has the nerve to say that since we've worked out so much, there won't be any time for public discussion, so we'll just tell the public all the things we've worked out. My eyes bugged out: I didn't think we had worked out a damn thing! Finally, when we were discussing the question of whether we had developed a way of having a dialogue among people of different disciplines -- our second basic "problem" -- I said that I noticed something interesting. Each of us talked about what we thought the "ethics of equality" was, from our own point of view, without paying any attention to the other guy's point of view. For example, the historian proposed that the way to understand ethical problems is to look historically at how they evolved and how they developed; the international lawyer suggested that the way to do it is to see how in fact people actually act in different situations and make their arrangements; the Jesuit priest was always referring to "the fragmentation of knowledge"; and I, as a scientist, proposed that we should isolate the problem in a way analogous to Galileo's techniques for experiments; and so on. "So, in my opinion," I said, "we had no dialogue at all. Instead, we had nothing but chaos!" Of course I was attacked, from all around. "Don't you think that order can come from chaos?" "Uh, well, as a general principle, or..." I didn't understand what to do with a question like "Can order come from chaos?" Yes, no, what of it? There were a lot of fools at that conference -- pompous fools -- and pompous fools drive me up the wall. Ordinary fools are all right; you can talk to them, and try to help them out. But pompous fools -- guys who are fools and are covering it all over and impressing people as to how wonderful they are with all this hocus pocus -- THAT, I CANNOT STAND! An ordinary fool isn't a faker; an honest fool is all right. But a dishonest fool is terrible! And that's what I got at the conference, a bunch of pompous fools, and I got very upset. I'm not going to get upset like that again, so I won't participate in interdisciplinary conferences any more. A footnote: While I was at the conference, I stayed at the Jewish Theological Seminary, where young rabbis -- I think they were Orthodox -- were studying. Since I have a Jewish background, I knew of some of the things they told me about the Talmud, but I had never seen the Talmud. It was very interesting. It's got big pages, and in a little square in the corner of the page is the original Talmud, and then in a sort of L-shaped margin, all around this square, are commentaries written by different people. The Talmud has evolved, and everything has been discussed again and again, all very carefully, in a medieval kind of reasoning. I think the commentaries were shut down around the thirteen- or fourteen- or fifteen-hundreds -- there hasn't been any modern commentary. The Talmud is a wonderful book, a great, big potpourri of things: trivial questions, and difficult questions -- for example, problems of teachers, and how to teach -- and then some trivia again, and so on. The students told me that the Talmud was never translated, something I thought was curious, since the book is so valuable. One day, two or three of the young rabbis came to me and said, "We realize that we can't study to be rabbis in the modern world without knowing something about science, so we'd like to ask you some questions." Of course there are thousands of places to find out about science, and Columbia University was right near there, but I wanted to know what kinds of questions they were interested in. They said, "Well, for instance, is electricity fire?" "No," I said, "but... what is the problem?" They said, "In the Talmud it says you're not supposed to make fire on a Saturday, so our question is, can we use electrical things on Saturdays?" I was shocked. They weren't interested in science at all! The only way science was influencing their lives was so they might be able to interpret better the Talmud! They weren't interested in the world outside, in natural phenomena; they were only interested in resolving some question brought up in the Talmud. And then one day -- I guess it was a Saturday -- I want to go up in the elevator, and there's a guy standing near the elevator. The elevator comes, I go in, and he goes in with me. I say, "Which floor?" and my hand's ready to push one of the buttons. "No, no!" he says, "I'm supposed to push the buttons for you." "What?" "Yes! The boys here can't push the buttons on Saturday, so I have to do it for them. You see, I'm not Jewish, so it's all right for me to push the buttons. I stand near the elevator, and they tell me what floor, and I push the button for them." Well, this really bothered me, so I decided to trap the students in a logical discussion. I had been brought up in a Jewish home, so I knew the kind of nitpicking logic to use, and I thought, "Here's fun!" My plan went like this: I'd start off by asking, "Is the Jewish viewpoint a viewpoint that any man can have? Because if it is not, then it's certainly not something that is truly valuable for humanity... yak, yak, yak." And then they would have to say, "Yes, the Jewish viewpoint is good for any man." Then I would steer them around a little more by asking, "Is it ethical for a man to hire another man to do something which is unethical for him to do? Would you hire a man to rob for you, for instance?" And I keep working them into the channel, very slowly, and very carefully, until I've got them -- trapped! And do you know what happened? They're rabbinical students, right? They were ten times better than I was! As soon as they saw I could put them in a hole, they went twist, turn, twist -- I can't remember how -- and they were free! I thought I had come up with an original idea -- phooey! It had been discussed in the Talmud for ages! So they cleaned me up just as easy as pie -- they got right out. Finally I tried to assure the rabbinical students that the electric spark that was bothering them when they pushed the elevator buttons was not fire. I said, "Electricity is not fire. It's not a chemical process, as fire is." "Oh?" they said. "Of course, there's electricity in amongst the atoms in a fire." "Aha!" they said. "And in every other phenomenon that occurs in the world." I even proposed a practical solution for eliminating the spark. "If that's what's bothering you, you can put a condenser across the switch, so the electricity will go on and off without any spark whatsoever -- anywhere." But for some reason, they didn't like that idea either. It really was a disappointment. Here they are, slowly coming to life, only to better interpret the Talmud. Imagine! In modern times like this, guys are studying to go into society and do something -- to be a rabbi -- and the only way they think that science might be interesting is because their ancient, provincial, medieval problems are being confounded slightly by some new phenomena. Something else happened at that time which is worth mentioning here. One of the questions the rabbinical students and I discussed at some length was why it is that in academic things, such as theoretical physics, there is a higher proportion of Jewish kids than their proportion in the general population. The rabbinical students thought the reason was that the Jews have a history of respecting learning: They respect their rabbis, who are really teachers, and they respect education. The Jews pass on this tradition in their families all the time, so that if a boy is a good student, it's as good as, if not better than, being a good football player. It was the same afternoon that I was reminded how true it is. I was invited to one of the rabbinical students' home, and he introduced me to his mother, who had just come back from Washington, D.C. She clapped her hands together, in ecstasy, and said, "Oh! My day is complete. Today I met a general, and a professor!" I realized that there are not many people who think it's just as important, and just as nice, to meet a professor as to meet a general. So I guess there's something in what they said. -------- Judging Books by Their Covers After the war, physicists were often asked to go to Washington and give advice to various sections of the government, especially the military. What happened, I suppose, is that since the scientists had made these bombs that were so important, the military felt we were useful for something. Once I was asked to serve on a committee which was to evaluate various weapons for the army, and I wrote a letter back which explained that I was only a theoretical physicist, and I didn't know anything about weapons for the army. The army responded that they had found in their experience that theoretical physicists were very useful to them in making decisions, so would I please reconsider? I wrote back again and said I didn't really know anything, and doubted I could help them. Finally I got a letter from the Secretary of the Army, which proposed a compromise: I would come to the first meeting, where I could listen and see whether I could make a contribution or not. Then I could decide whether I should continue. I said I would, of course. What else could I do? I went down to Washington and the first thing that I went to was a cocktail party to meet everybody. There were generals and other important characters from the army, and everybody talked. It was pleasant enough. One guy in a uniform came to me and told me that the army was glad that physicists were advising the military because it had a lot of problems. One of the problems was that tanks use up their fuel very quickly and thus can't go very far. So the question was how to refuel them as they're going along. Now this guy had the idea that, since the physicists can get energy out of uranium, could I work out a way in which we could use silicon dioxide -- sand, dirt -- as a fuel? If that were possible, then all this tank would have to do would be to have a little scoop underneath, and as it goes along, it would pick up the dirt and use it for fuel! He thought that was a great idea, and that all I had to do was to work out the details. That was the kind of problem I thought we would be talking about in the meeting the next day. I went to the meeting and noticed that some guy who had introduced me to all the people at the cocktail party was sitting next to me. He was apparently some flunky assigned to be at my side at all times. On my other side was some super general I had heard of before. At the first session of the meeting they talked about some technical matters, and I made a few comments. But later on, near the end of the meeting, they began to discuss some problem of logistics, about which I knew nothing. It had to do with figuring out how much stuff you should have at different places at different times. And although I tried to keep my trap shut, when you get into a situation like that, where you're sitting around a table with all these "important people" discussing these "important problems," you can't keep your mouth shut, even if you know nothing whatsoever! So I made some comments in that discussion, too. During the next coffee break the guy who had been assigned to shepherd me around said, "I was very impressed by the things you said during the discussion. They certainly were an important contribution." I stopped and thought about my "contribution" to the logistics problem, and realized that a man like the guy who orders the stuff for Christmas at Macy's would be better able to figure out how to handle problems like that than I. So I concluded: a) if I had made an important contribution, it was sheer luck; b) anybody else could have done as well, but most people could have done better, and c) this flattery should wake me up to the fact that I am not capable of contributing much. Right after that they decided, in the meeting, that they could do better discussing the organization of scientific research (such as, should scientific development be under the Corps of Engineers or the Quartermaster Division?) than specific technical matters. I knew that if there was to be any hope of my making a real contribution, it would be only on some specific technical matter, and surely not on how to organize research in the army. Until then I didn't let on any of my feelings about the situation to the chairman of the meeting -- the big shot who had invited me in the first place. As we were packing our bags to leave, he said to me, all smiles, "You'll be joining us, then, for the next meeting..." "No, I won't." I could see his face change suddenly. He was very surprised that I would say no, after making those "contributions." In the early sixties, a lot of my friends were still giving advice to the government. Meanwhile, I was having no feeling of social responsibility and resisting, as much as possible, offers to go to Washington, which took a certain amount of courage in those times. I was giving a series of freshman physics lectures at that time, and after one of them, Tom Harvey, who assisted me in putting on the demonstrations, said, "You oughta see what's happening to mathematics in schoolbooks! My daughter comes home with a lot of crazy stuff!" I didn't pay much attention to what he said. But the next day I got a telephone call from a pretty famous lawyer here in Pasadena, Mr. Norris, who was at that time on the State Board of Education. He asked me if I would serve on the State Curriculum Commission, which had to choose the new schoolbooks for the state of California. You see, the state had a law that all of the schoolbooks used by all of the kids in all of the public schools have to be chosen by the State Board of Education, so they have a committee to look over the books and to give them advice on which books to take. It happened that a lot of the books were on a new method of teaching arithmetic that they called "new math," and since usually the only people to look at the books were schoolteachers or administrators in education, they thought it would be a good idea to have somebody who uses mathematics scientifically, who knows what the end product is and what we're trying to teach it for, to help in the evaluation of the schoolbooks. I must have had, by this time, a guilty feeling about not cooperating with the government, because I agreed to get on this committee. Immediately I began getting letters and telephone calls from book publishers. They said things like, "We're very glad to hear you're on the committee because we really wanted a scientific guy..." and "It's wonderful to have a scientist on the committee, because our books are scientifically oriented..." But they also said things like, "We'd like to explain to you what our book is about..." and "We'll be very glad to help you in any way we can to judge our books..." That seemed to me kind of crazy. I'm an objective scientist, and it seemed to me that since the only thing the kids in school are going to get is the books (and the teachers get the teacher's manual, which I would also get), any extra explanation from the company was a distortion. So I didn't want to speak to any of the publishers and always replied, "You don't have to explain; I'm sure the books will speak for themselves." I represented a certain district, which comprised most of the Los Angeles area except for the city of Los Angeles, which was represented by a very nice lady from the L.A. school system named Mrs. Whitehouse. Mr. Norris suggested that I meet her and find out what the committee did and how it worked. Mrs. Whitehouse started out telling me about the stuff they were going to talk about in the next meeting (they had already had one meeting; I was appointed late). "They're going to talk about the counting numbers." I didn't know what that was, but it turned out they were what I used to call integers. They had different names for everything, so I had a lot of trouble right from the start. She told me how the members of the commission normally rated the new schoolbooks. They would get a relatively large number of copies of each book and would give them to various teachers and administrators in their district. Then they would get reports back on what these people thought about the books. Since I didn't know a lot of teachers or administrators, and since I felt that I could, by reading the books myself, make up my mind as to how they looked to me, I chose to read all the books myself. (There were some people in my district who had expected to look at the books and wanted a chance to give their opinion. Mrs. Whitehouse offered to put their reports in with hers so they would feel better and I wouldn't have to worry about their complaints. They were satisfied, and I didn't get much trouble.) A few days later a guy from the book depository called me up and said, "We're ready to send you the books, Mr. Feynman; there are three hundred pounds." I was overwhelmed. "It's all right, Mr. Feynman; we'll get someone to help you read them." I couldn't figure out how you do that: you either read them or you don't read them. I had a special bookshelf put in my study downstairs (the books took up seventeen feet), and began reading all the books that were going to be discussed in the next meeting. We were going to start out with the elementary schoolbooks. It was a pretty big job, and I worked all the time at it down in the basement. My wife says that during this period it was like living over a volcano. It would be quiet for a while, but then all of a sudden, "BLLLLLOOOOOOWWWWW!!!!" -- there would be a big explosion from the "volcano" below. The reason was that the books were so lousy. They were false. They were hurried. They would try to be rigorous, but they would use examples (like automobiles in the street for "sets") which were almost OK, but in which there were always some subtleties. The definitions weren't accurate. Everything was a little bit ambiguous -- they weren't smart enough to understand what was meant by "rigor." They were faking it. They were teaching something they didn't understand, and which was, in fact, useless, at that time, for the child. I understood what they were trying to do. Many people thought we were behind the Russians after Sputnik, and some mathematicians were asked to give advice on how to teach math by using some of the rather interesting modern concepts of mathematics. The purpose was to enhance mathematics for the children who found it dull. I'll give you an example: They would talk about different bases of numbers -- five, six, and so on -- to show the possibilities. That would be interesting for a kid who could understand base ten -- something to entertain his mind. But what they had turned it into, in these books, was that every child had to learn another base! And then the usual horror would come: "Translate these numbers, which are written in base seven, to base five." Translating from one base to another is an utterly useless thing. If you can do it, maybe it's entertaining; if you can't do it, forget it. There's no point to it. Anyhow, I'm looking at all these books, all these books, and none of them has said anything about using arithmetic in science. If there are any examples on the use of arithmetic at all (most of the time it's this abstract new modern nonsense), they are about things like buying stamps. Finally I come to a book that says, "Mathematics is used in science in many ways. We will give you an example from astronomy, which is the science of stars." I turn the page, and it says, "Red stars have a temperature of four thousand degrees, yellow stars have a temperature of five thousand degrees..." -- so far, so good. It continues: "Green stars have a temperature of seven thousand degrees, blue stars have a temperature of ten thousand degrees, and violet stars have a temperature of... (some big number)." There are no green or violet stars, but the figures for the others are roughly correct. It's vaguely right -- but already, trouble! That's the way everything was: Everything was written by somebody who didn't know what the hell he was talking about, so it was a little bit wrong, always! And how we are going to teach well by using books written by people who don't quite understand what they're talking about, I cannot understand. I don't know why, but the books are lousy; UNIVERSALLY LOUSY! Anyway, I'm happy with this book, because it's the first example of applying arithmetic to science. I'm a bit unhappy when I read about the stars' temperatures, but I'm not very unhappy because it's more or less right -- it's just an example of error. Then comes the list of problems. It says, "John and his father go out to look at the stars. John sees two blue stars and a red star. His father sees a green star, a violet star, and two yellow stars. What is the total temperature of the stars seen by John and his father?" -- and I would explode in horror. My wife would talk about the volcano downstairs. That's only an example: it was perpetually like that. Perpetual absurdity! There's no purpose whatsoever in adding the temperature of two stars. Nobody ever does that except, maybe, to then take the average temperature of the stars, but not to find out the total temperature of all the stars! It was awful! All it was was a game to get you to add, and they didn't understand what they were talking about. It was like reading sentences with a few typographical errors, and then suddenly a whole sentence is written backwards. The mathematics was like that. Just hopeless! Then I came to my first meeting. The other members had given some kind of ratings to some of the books, and they asked me what my ratings were. My rating was often different from theirs, and they would ask, "Why did you rate that book low?" I would say the trouble with that book was this and this on page so-and-so -- I had my notes. They discovered that I was kind of a goldmine: I would tell them, in detail, what was good and bad in all the books; I had a reason for every rating. I would ask them why they had rated this book so high, and they would say, "Let us hear what you thought about such and such a book." I would never find out why they rated anything the way they did. Instead, they kept asking me what I thought. We came to a certain book, part of a set of three supplementary books published by the same company, and they asked me what I thought about it. I said, "The book depository didn't send me that book, but the other two were nice." Someone tried repeating the question: "What do you think about that book?" "I said they didn't send me that one, so I don't have any judgment on it." The man from the book depository was there, and he said, "Excuse me; I can explain that. I didn't send it to you because that book hadn't been completed yet. There's a rule that you have to have every entry in by a certain time, and the publisher was a few days late with it. So it was sent to us with just the covers, and it's blank in between. The company sent a note excusing themselves and hoping they could have their set of three books considered, even though the third one would be late." It turned out that the blank book had a rating by some of the other members! They couldn't believe it was blank, because they had a rating. In fact, the rating for the missing book was a little bit higher than for the two others. The fact that there was nothing in the book had nothing to do with the rating. I believe the reason for all this is that the system works this way. When you give books all over the place to people, they're busy; they're careless; they think, "Well, a lot of people are reading this book, so it doesn't make any difference." And they put in some kind of number -- some of them, at least; not all of them, but some of them. Then when you receive your reports, you don't know why this particular book has fewer reports than the other books -- that is, perhaps one book has ten, and this one only has six people reporting -- so you average the rating of those who reported; you don't average the ones who didn't report, so you get a reasonable number. This process of averaging all the time misses the fact that there is absolutely nothing between the covers of the book! I made that theory up because I saw what happened in the curriculum commission: For the blank book, only six out of the ten members were reporting, whereas with the other books, eight or nine out of the ten were reporting. And when they averaged the six, they got as good an average as when they averaged with eight or nine. They were very embarrassed to discover they were giving ratings to that book, and it gave me a little bit more confidence. It turned out the other members of the committee had done a lot of work in giving out the books and collecting reports, and had gone to sessions in which the book publishers would explain the books before they read them; I was the only guy on that commission who read all the books and didn't get any information from the book publishers except what was in the books themselves, the things that would ultimately go to the schools. This question of trying to figure out whether a book is good or bad by looking at it carefully or by taking the reports of a lot of people who looked at it carelessly is like this famous old problem: Nobody was permitted to see the Emperor of China, and the question was, What is the length of the Emperor of China's nose? To find out, you go all over the country asking people what they think the length of the Emperor of China's nose is, and you average it. And that would be very "accurate" because you averaged so many people. But it's no way to find anything out; when you have a very wide range of people who contribute without looking carefully at it, you don't improve your knowledge of the situation by averaging. At first we weren't supposed to talk about the cost of the books. We were told how many books we could choose, so we designed a program which used a lot of supplementary books, because all the new textbooks had failures of one kind or another. The most serious failures were in the "new math" books: there were no applications; not enough word problems. There was no talk of selling stamps; instead there was too much talk about commutation and abstract things and not enough translation to situations in the world. What do you do: add, subtract, multiply, or divide? So we suggested some books which had some of that as supplementary -- one or two for each classroom -- in addition to a textbook for each student. We had it all worked out to balance everything, after much discussion. When we took our recommendations to the Board of Education, they told us they didn't have as much money as they had thought, so we'd have to go over the whole thing and cut out this and that, now taking the cost into consideration, and ruining what was a fairly balanced program, in which there was a chance for a teacher to find examples of the things (s)he needed. Now that they changed the rules about how many books we could recommend and we had no more chance to balance, it was a pretty lousy program. When the senate budget committee got to it, the program was emasculated still further. Now it was really lousy! I was asked to appear before the state senators when the issue was being discussed, but I declined: By that time, having argued this stuff so much, I was tired. We had prepared our recommendations for the Board of Education, and I figured it was their job to present it to the state -- which was legally right, but not politically sound. I shouldn't have given up so soon, but to have worked so hard and discussed so much about all these books to make a fairly balanced program, and then to have the whole thing scrapped at the end -- that was discouraging! The whole thing was an unnecessary effort that could have been turned around and done the opposite way: start with the cost of the books, and buy what you can afford. What finally clinched it, and made me ultimately resign, was that the following year we were going to discuss science books. I thought maybe the science would be different, so I looked at a few of them. The same thing happened: something would look good at first and then turn out to be horrifying. For example, there was a book that started out with four pictures: first there was a wind-up toy; then there was an automobile; then there was a boy riding a bicycle; then there was something else. And underneath each picture it said, "What makes it go?" I thought, "I know what it is: They're going to talk about mechanics, how the springs work inside the toy; about chemistry, how the engine of the automobile works; and biology, about how the muscles work." It was the kind of thing my father would have talked about: "What makes it go? Everything goes because the sun is shining." And then we would have fun discussing it: "No, the toy goes because the spring is wound up," I would say. "How did the spring get wound up?" he would ask. "I wound it up." "And how did you get moving?" "From eating." "And food grows only because the sun is shining. So it's because the sun is shining that all these things are moving." That would get the concept across that motion is simply the transformation of the sun's power. I turned the page. The answer was, for the wind-up toy, "Energy makes it go." And for the boy on the bicycle, "Energy makes it go." For everything, "Energy makes it go." Now that doesn't mean anything. Suppose it's "Wakalixes." That's the general principle: "Wakalixes makes it go." There's no knowledge coming in. The child doesn't learn anything; it's just a word! What they should have done is to look at the wind-up toy, see that there are springs inside, learn about springs, learn about wheels, and never mind "energy." Later on, when the children know something about how the toy actually works, they can discuss the more general principles of energy. It's also not even true that "energy makes it go," because if it stops, you could say, "energy makes it stop" just as well. What they're talking about is concentrated energy being transformed into more dilute forms, which is a very subtle aspect of energy. Energy is neither increased nor decreased in these examples; it's just changed from one form to another. And when the things stop, the energy is changed into heat, into general chaos. But that's the way all the books were: They said things that were useless, mixed-up, ambiguous, confusing, and partially incorrect. How anybody can learn science from these books, I don't know, because it's not science. So when I saw all these horrifying books with the same kind of trouble as the math books had, I saw my volcano process starting again. Since I was exhausted from reading all the math books, and discouraged from its all being a wasted effort, I couldn't face another year of that, and had to resign. Sometime later I heard that the energy-makes-it-go book was going to be recommended by the curriculum commission to the Board of Education, so I made one last effort. At each meeting of the commission the public was allowed to make comments, so I got up and said why I thought the book was bad. The man who replaced me on the commission said, "That book was approved by sixty-five engineers at the Such-and-such Aircraft Company!" I didn't doubt that the company had some pretty good engineers, but to take sixty-five engineers is to take a wide range of ability -- and to necessarily include some pretty poor guys! It was once again the problem of averaging the length of the emperor's nose, or the ratings on a book with nothing between the covers. It would have been far better to have the company decide who their better engineers were, and to have them look at the book. I couldn't claim that I was smarter than sixty-five other guys -- but the average of sixty-five other guys, certainly! I couldn't get through to him, and the book was approved by the board. When I was still on the commission, I had to go to San Francisco a few times for some of the meetings, and when I returned to Los Angeles from the first trip, I stopped in the commission office to get reimbursed for my expenses. "How much did it cost, Mr. Feynman?" "Well, I flew to San Francisco, so it's the airfare, plus the parking at the airport while I was away." "Do you have your ticket?" I happened to have the ticket. "Do you have a receipt for the parking?" "No, but it cost $2.35 to park my car." "But we have to have a receipt." "I told you how much it cost. If you don't trust me, why do you let me tell you what I think is good and bad about the schoolbooks?". There was a big stew about that. Unfortunately, I had been used to giving lectures for some company or university or for ordinary people, not for the government. I was used to, "What were your expenses?" -- "So-and-so much." -- "Here you are, Mr. Feynman." I then decided I wasn't going to give them a receipt for anything. After the second trip to San Francisco they again asked me for my ticket and receipts. "I haven't got any." "This can't go on, Mr. Feynman." "When I accepted to serve on the commission, I was told you were going to pay my expenses." "But we expected to have some receipts to prove the expenses." "I have nothing to prove it, but you know I live in Los Angeles and I go to these other towns; how the hell do you think I get there?" They didn't give in, and neither did I. I feel when you're in a position like that, where you choose not to buckle down to the System, you must pay the consequences if it doesn't work. So I'm perfectly satisfied, but I never did get compensation for the trips. It's one of those games I play. They want a receipt? I'm not giving them a receipt. Then you're not going to get the money. OK, then I'm not taking the money. They don't trust me? The hell with it; they don't have to pay me. Of course it's absurd! I know that's the way the government works; well, screw the government! I feel that human beings should treat human beings like human beings. And unless I'm going to be treated like one, I'm not going to have anything to do with them! They feel bad? They feel bad. I feel bad, too. We'll just let it go. I know they're "protecting the taxpayer," but see how well you think the taxpayer was being protected in the following situation. There were two books that we were unable to come to a decision about after much discussion; they were extremely close. So we left it open to the Board of Education to decide. Since the board was now taking the cost into consideration, and since the two books were so evenly matched, the board decided to open the bids and take the lower one. Then the question came up, "Will the schools be getting the books at the regular time, or could they, perhaps, get them a little earlier, in time for the coming term?" One publisher's representative got up and said, "We are happy that you accepted our bid; we can get it out in time for the next term." A representative of the publisher that lost out was also there, and he got up and said, "Since our bids were submitted based on the later deadline, I think we should have a chance to bid again for the earlier deadline, because we too can meet the earlier deadline." Mr. Norris, the Pasadena lawyer on the board, asked the guy from the other publisher, "And how much would it cost for us to get your books at the earlier date?" And he gave a number: It was less! The first guy got up: "If he changes his bid, I have the right to change my bid!" -- and his bid is still less! Norris asked, "Well how is that -- we get the books earlier and it's cheaper?" "Yes," one guy says. "We can use a special offset method we wouldn't normally use..." -- some excuse why it came out cheaper. The other guy agreed: "When you do it quicker, it costs less!" That was really a shock. It ended up two million dollars cheaper. Norris was really incensed by this sudden change. What happened, of course, was that the uncertainty about the date had opened the possibility that these guys could bid against each other. Normally, when books were supposed to be chosen without taking the cost into consideration, there was no reason to lower the price; the book publishers could put the prices at any place they wanted to. There was no advantage in competing by lowering the price; the way you competed was to impress the members of the curriculum commission. By the way, whenever our commission had a meeting, there were book publishers entertaining curriculum commission members by taking them to lunch and talking to them about their books. I never went. It seems obvious now, but I didn't know what was happening the time I got a package of dri