и его друзья по окончании облучения мчались,
как одержимые, по длинным коридорам института, чтобы испытать свои препараты
в помещении, не зараженном радиоактивностью. Ведь могло так случиться, что
образовался короткоживущий радиоактивный элемент с периодом полураспада в
несколько секунд. Потом обычно можно было видеть, как они медленно
возвращались с разочарованными лицами. Для первых восьми элементов физики не
смогли обнаружить никакой искусственной радиоактивности. Однако на девятом
элементе, фторе, счетчик вдруг защелкал. Вскоре итальянцы установили, что
облучение нейтронами активизирует многие элементы. Чаще всего последние
излучали бета-лучи и превращались при этом в атомы следующего элемента.
Ферми открыл "радиоактивность, индуцированную бомбардировкой нейтронами".
Так назвал он статью, написанную 10 апреля и опубликованную в мае 1934 года
в журнале "Нейчур",
Спор вокруг девяносто третьего элемента
Интересных результатов Энрико Ферми ожидал для последнего элемента
периодической системы. Уран является самым тяжелым элементом, встречающимся
на Земле. Ядро этого атома состоит из 92 протонов и 146 нейтронов.
Относительная атомная масса в результате составляет 238, точнее, для изотопа
[238]U. Уже тогда предполагали, что уран состоит не только из
этого изотопа. Например, гипотетический актиноуран должен был быть легче.
Однако с помощью масс-спектрографа Астона в то время не удавалось найти
другие изотопы урана, кроме [238]U.
Вопрос об актиноуране был разрешен однозначно только тогда, когда
американский физик Артур Демпстер из Чикагского университета в декабре 1934
года использовал новый источник ионов для масс-спектрографа повышенной
разрешающей способности. В 1935 году Демпстер внес ясность в вопрос об
изотопном составе урана: кроме известной четкой линии, для [238]U
он нашел еще слабую линию для [235]U -- искомого актиноурана.
Сегодня мы знаем, что природный уран на 99,27 % состоит из
[238]U, на 0,72 % -- из [235]U и на 0,005 % -- из
[234]U.
Когда в Физическом институте Римского университета в середине 1934 года
молодой Ферми начал бомбардировать уран нейтронами, он, конечно, исходил
только из существования [238]U. Если бы, как полагал Ферми,
удалось внедрить в ядро еще один нейтрон, то по уравнению
[238]U + n = [239]U
образовался бы радиоактивный изотоп с массовым числом 239 и -- в случае
его дальнейшего бета-распада -- элемент с зарядом ядра 93:
[239]U = [239]X + e-
Такого вещества на Земле еще не было! Перспектива открытия этого
элемента воодушевляла. Она означала проникновение в неизвестную область
материи, до тех пор полностью сокрытую от человеческих представлений.
Сходное чувство должно было в прежние времена охватывать кругосветных
мореплавателей, когда они пускались в экспедиции для открытия новых стран и
континентов и обнаружения их богатств.
Воодушевлению итальянцев не было границ, когда с первым же опытом
пришла удача: облученный уран оказался сильно радиоактивным и, как
предполагалось, испускал бета-лучи. Исследования показали, что продукты
радиоактивного распада не идентичны с соседними элементами урана. Такое
обнаружение можно было провести очень изящно. При химическом анализе
требовалось только добавить соединение предполагаемого элемента, скажем,
соли тория. После обычной химической переработки и разделения активность
неизвестного продукта превращения либо обнаруживалась снова в ториевой
фракции -- и тогда это был изотоп тория,-- либо ее не было. В последнем
случае разъяснения могли дать дальнейшие химические опыты с добавлением
других элементов или их соединений. Такие химические идентификации часто и с
большой точностью проводили в то время Отто Хан, Лиза Мейтнер и Фриц
Штрасман.
При повторении своих опытов Ферми не нашел никаких указаний на то, что
из урана, облученного нейтронами, образовались какие-либо изотопы известных
соседних элементов, такие, как протактиний, торий, актиний, радий. Исходя из
этого, новый вид радиоактивных атомов должен был принадлежать элементам,
находящимся по другую сторону урана -- трансуранам! По мнению Ферми,
особенно правомерным было приписать образовавшийся радиоактивный осадок с
периодом полураспада 13 мин новому, 93-му, элементу. Несмотря на это, Ферми
дал очень осторожное название своему отчету, опубликованному в журнале
"Нейчур" 16 июня 1934 года: "Возможное получение элементов с атомным
номером, превышающим 92". Поэтому, когда итальянская печать начала во все
горло кричать о доказанном получении 93-го элемента и громогласно причислила
эти успехи к "победам фашистов в области культуры", это не могло не задеть
Ферми и его коллег.
Итальянские физики открыли в своих работах поразительный эффект:
радиоактивность, индуцированная нейтронами, вдруг усиливалась во много раз,
если нейтроны предварительно пропускали через слой парафина. Парафин
является смесью углеводородов. На своем пути через кусок парафина нейтроны
встречали большое число атомов водорода той же массы. В результате
столкновений нейтроны передавали атомам водорода часть энергии, отклонялись
от прямолинейного пути и приобретали зигзагообразную траекторию. Передавая
часть энергии, они тормозились. Таким образом, нейтроны покидали парафин со
значительно меньшими скоростями, чем входили него. Такие замедленные, или
тепловые, нейтроны вызывают превращения атомов с гораздо большей
вероятностью, чем быстрые, которые часто проскакивают мимо цели.
Ферми размышлял далее... С помощью этого метода можно будет в ближайшем
будущем искусственно получать новые радиоактивные элементы. Быть может, даже
в таких количествах, что они смогли бы заменить естественные радиоактивные
вещества, которые все больше дорожают. Открытие приобретало коммерческое
направление, что заставило Ферми и его сотрудников 26 октября 1934 года
подать заявку на патент по искусственному изготовлению радиоактивных веществ
из других элементов путем бомбардировки замедленными нейтронами. Что же, еще
один алхимический патент? Едва ли. Мысль о том, чтобы получать когда-либо
атомную энергию при помощи таких искусственных превращений элементов, не
приходила тогда Ферми. И все же сделанное открытие означало существенный шаг
в этом направлении.
Вокруг открытия 93-го элемента грозил опять возникнуть спор о
приоритете. Ибо в июле 1934 года чешский инженер Коблик сообщил что он
выделил этот элемент из урановой смолки Иоахимсталя и уже определил его
относительную атомную массу: 240. В честь своей родины Кублик назвал его
богемий. Это известие было распространено газетами по всему свету.
Открытие элемента 93, заявленное с двух сторон, было, конечно,
сенсацией. Однако Ида Ноддак не разделяла всеобщего воодушевления. Это было
ясно хотя бы из ее доклада "О современных методах предсказания химических
элементов", который она сделала 14 сентября 1934 года в Ленинграде по случаю
столетия Д. И. Менделеева. Вместе с другими выдающимися учеными, среди
которых был Отто Хан, она приехала на Международный Менделеевский съезд по
приглашению Академии наук СССР.
С небольшими изменениями доклад Иды Ноддак привел журнал "Ангевандте
хеми" 15 сентября 1934 года под заголовком: "О 93-м элементе". Госпожа
Ноддак сохранила критическую точку зрения на такие "открытия". Она сообщила,
что богемий является не чем иным, как смесью соединений ванадия и вольфрама.
Не может быть и речи о новом элементе. К тому же в августе 1934 года
"Хемикер цейтунг" поместила заявление: "Инженер Одолен Коблик, председатель
правления государственной урановой и радиевой фабрики в Иоахимстале,
Чехословакия, подавший заявку на открытие нового элемента, богемия, сообщает
нам, что он оказался жертвой ошибки. При повторном испытании обнаружено, что
исследованные препараты содержали значительные количества вольфрама,
своеобразное поведение которого при анализе наводило на мысль о
существовании нового элемента. Как ни досаден этот факт, следует учесть
чистосердечность, с которой инж. Коблик сообщает всем о своей нелепой
ошибке".
Воинствующая ученая оказалась права. Доказательства Ферми также не были
убедительными; по мнению Иды Ноддак, было бы ошибочным делать заключение о
существовании элемента 93 только на том основании, что не были обнаружены в
качестве возможных продуктов элементы, соседние с ураном. Конечно, в уже
известных ядерных превращениях всякий раз возникали изотопы либо того же,
либо соседнего элемента. Однако это не всегда может быть так. Можно с тем же
успехом принять,-- делала Ноддак логичный вывод,-- что при таких, ранее не
известных, разрушениях ядра -- с помощью нейтронов -- могут в значительной
мере происходить другие ядерные реакции, не те, которые... наблюдались до
сих пор. Думается, что при обстреле тяжелых ядер нейтронами эти ядра
развалятся на несколько больших частей, которые как раз могут быть изотопами
известных элементов, но не соседних с облученными".
Рассуждения Иды Ноддак должны были бы, как искра в стоге сена,
перенестись к физикам-атомщикам. Однако "ученые мужи" остались равнодушными.
"То, что не может быть, физически не должно быть", и никто не давал на это
своего благословения, как и на смелое предположение Иды Ноддак, высказанное
в 1934 году, согласно которому ядро урана могло самым настоящим образом
распасться. Спрошенный позднее Отто Хан довольно мрачно заявил, что он в то
время даже не рисковал цитировать гипотезу Ноддак, казавшуюся абсурдной, ибо
опасался за свою репутацию ученого.
Открытия элементов идут полным ходом
Бывший сотрудник Отто Хана, радиохимик А. фон Гроссе, считал, что
трансураны Ферми вовсе не новые элементы, а на самом деле изотопы 91-го
элемента -- протактиния. Тут заговорило честолюбие первооткрывателей
протактиния. Отто Хан и Лиза Мейтнер хотели сами установить, кто же прав --
Ферми или Гроссе.
То не был протактиний. Исследователям из Берлин-Далема не составило
труда установить это. Если Хан и Мейтнер думали тем самым прояснить проблему
трансуранов, то они, безусловно, ошибались. Результаты экспериментов были на
редкость запутанными. Вещество, с трудом выделенное после облучения урана
нейтронами, подвергавшееся многократному отделению, оказалось сложным,
состоящим из нескольких радиоактивных изотопов. Это необычайно затруднило
необходимую идентификацию новых трансуранов: ведь не только уран, но и торий
под действием нейтронов может превращаться по нескольким направлениям.
Из первой работы "к проблеме урана" от декабря 1934 года постепенно
вырастали все новые. К концу 1938 года, после четырехлетнего исследования,
14 публикаций свидетельствовали о работоспособности Хана, Мейтнер и
Штрасмана. "Почти трагический результат",-- так позднее оценил их Отто Хан.
К известным рядам естественной радиоактивности прибавились
гипотетические ряды превращений урана, облученного нейтронами. Их
приходилось постоянно изменять. Оказалось необычайно сложным
систематизировать эти схемы распада, чтобы объяснить возникновение элементов
93, 94, 95, 96, 97, называемых также экарением, экаосмием, экаиридием,
экаплатиной, эказолотом. В том, что им удалось обнаружить трансураны от 93
до 97, у немецких ученых, судя по их публикациям и докладам, никаких
сомнений не было. О работах Отто Хана по изучению "природных и искусственных
радиоактивных элементов последнего ряда периодической системы" сообщил 10
декабря 1935 года "Генераль анцейгер" во Франкфурте-на-Майне под заголовком
"Новые элементы ... полученные искусственно!":
"...Как установил проф. Хан, искусственно получены по крайней мере три
различных тяжелых элемента такого рода (трансурана) Самый устойчивый имеет
период полураспада, равный трем дням. Новые элементы образуются, конечно,
лишь в исключительно малых количествах. До сих пор никто не видел их своими
глазами..."
Никто их не видел, и все же они должны существовать -- элементы тяжелее
урана?
Уже в марте 1936 года Отто Хан смог доложить о новом продукте
превращения, который еще не выделил Ферми: изотопе урана [239]U.
Для исследователя атома и его сотрудников не было ни малейшего сомнения в
том, что этот бета-излучатель с периодом полураспада 23 мин должен
превратиться в элемент 93 -- экарений. Своими сравнительно слабыми
средствами берлинские ученые не смогли, к сожалению, обнаружить продукт
превращения. Помимо того, они не придали должного значения своему открытию,
поскольку были убеждены, что ранее уже нашли элемент 93 и его
идентифицировали.
В середине 1937 года в работы по урану включились Ирэн Жолио-Кюри и ее
сотрудник Поль Савич. Однако, как бы абсурдно это ни звучало, парижские
исследователи внесли, прежде всего, еще больше путаницы; они выделили новый
радиоактивный элемент с периодом полураспада 3,5 ч и объявили в своей первой
публикации в августе 1937 года, что это -- изотоп тория. Позднее они
сообщили, что это не изотоп тория, ибо его можно химическим путем отделить
от последнего. Вероятно, это -- изотоп актиния (элемент 89), если вообще не
новый трансуран с неожиданными свойствами. В марте 1938 года Кюри и Савич
сообщили, что после тщательного фракционирования подозрение на актиний
отпало. Как ни странно, вещество с периодом полураспада 3,5 ч обладало
скорее свойствами лантана (элемента 57). Через несколько месяцев они
спохватились вновь: это не может быть лантан, все же это трансуран.
В институте Отто Хана немало смеялись над стилем работы французских
коллег. Элемент с периодом полураспада 3,5 ч полушутливо, полуядовито
называли курьезум (Curiosum); напрашивалось сопоставление с Кюри (Curie).
Однако в Берлин-Далеме должны были тайно сознаться, что они тоже ничего не
сделали для идентификации нового продукта превращения.
18 ноября 1938 года в журнале "Натурвиссеншафтен" появилась еще одна
работа из института Общества кайзера Вильгельма в Берлин-Далеме. Авторами
были только Хан и Штрасман. Лиза Мейтнер вынуждена была покинуть фашистскую
Германию из-за обострившегося расового террора. Хан и Штрасман после
повторного фракционирования "курьезного" вещества с периодом полураспада 3,5
ч пришли к удивительному заключению: в нем находились три "изотопа радия",
осаждаемых солями бария.
Радий образуется из урана. Это известно со времени установления ряда
радиоактивного распада. Однако этот процесс протекает в течение миллионов
лет. Если то, что нашли Хан и Штрасман, было правильным, то от урана
(порядковый номер 92) должны были бы формально отщепиться две альфа-частицы,
чтобы образовался радий (порядковый номер 88). Хан посоветовался с Нильсом
Бором по поводу этого нового превращения ядра, вызванного нейтронами;
теоретик не смог сказать ничего, лишь покачал головой: такого быть не может!
В декабре 1938 года химики Хан и Штрасман работали без устали, чтобы
доказать физикам-атомщикам, что при облучении урана нейтронами действительно
образуется радий. Однако затем ими овладели сомнения. "С этими "изотопами
радия" творится что-то удивительное, о чем мы можем сообщить прежде всего
только тебе,-- писал Отто Хан 19 декабря 1938 года в поисках совета Лизе
Мейтнер, которая нашла убежище в Стокгольме.-- Периоды полураспада трех
изотопов установлены довольно точно; их можно отделить от всех элементов,
кроме бария... Фракционирование ничего не дает. Наши изотопы радия ведут
себя, как барий...". После многочисленных индикаторных опытов у Хана и
Штрасмана все больше крепла уверенность: это был барий! Из атома урана с
зарядом ядра 92 образовался атом бария с зарядом ядра 56. Ядро атома урана
раскололось на две половины с почти одинаковой массой. Совершенно новое
явление радиоактивного распада, которое грозило поставить с ног на голову
основы ядерной физики! "Мы не можем умолчать о наших данных, даже если они,
быть может, и абсурдны физически",-- высказался Отто Хан в следующем письме
к своей бывшей сотруднице, написанном 21 декабря 1938 года.
Оба радиохимика спешно подготовили текст статьи. Они отправили статью
22 декабря, а журнал "Натурвиссеншафтен" опубликовал ее в первом выпуске
нового года, 6 января 1939 года: "Об обнаружении и поведении
щелочноземельных металлов, образующихся при облучении урана нейтронами". В
этой исторической работе Отто Хан и Фриц Штрасман описывают, как им удалось
химически обнаружить раскол тяжелого ядра урана, позднее названный делением
ядра. Лиза Мейтнер получила по почте оттиск статьи.
Все неверно!
В тот момент, когда Хан и Штрасман обнаружили, что атом урана после
бомбардировки нейтронами взрывается на куски (со средней массой ядер), им
пришла в голову мысль: деление урана могло означать смертный приговор для
всех "открытых" ранее элементов -- от 93- до 97-го. Следовало ли все еще
верить в эти "трансураны"? Не лучше ли было считать, что в тех случаях речь
тоже шла об осколках урана, об элементах с более низкими порядковыми
номерами?
Ида Ноддак, которая теоретически признала возможность деления урана еще
в 1934 году, нанесла этим "трансуранам" смертельный удар. В марте 1939 года
в сообщении в "Натурвиссеншафтен" она с удовольствием перечисляла огрехи
обоих радиохимиков. Она цитировала последнюю работу Хана и Штрасмана от
ноября 1938 года, в которой авторы доложили об "открытии" не более не менее
как семи трансуранов. И все это было совершенно неверным. Почему не учли
указание Иды Ноддак, сделанное в 1934 году, которое открыватели деления
урана даже не осмеливаются цитировать?
Что касается существования "трансуранов", то Хан и Штрасман были
фактически вынуждены, шаг за шагом, отказаться от своих прежних
высказываний. Это началось в июне 1939 года с "окончательного вычеркивания"
экаплатины (96-й элемент), которая оказалась изотопом иода, и экаиридия
(95-й элемент), состоявшего в действительности из смеси изотопов теллура и
молибдена. Однако эти поправки были сделаны самими исследователями, а не по
указанию других. В этом отношении поведение Хана и Штрасмана заслуживает
всяческого уважения; они всегда публиковали свои опытные данные, тем самым
вынося их на суд других ученых.
Столь искусно возведенное здание трансуранов обрушилось очень быстро.
Элементы 93--97, в свое время столь "точно обнаруженные", оказались
фактически не чем иным, как обломками, образовавшимися при делении урана,
элементами со средней атомной массой. Ученые других стран -- Франции, США,
Советского Союза, Австрии -- конечно, также занимались идентификацией
многочисленных продуктов деления урана. Разочарование в Париже было очень
большим, когда обнаружили, что "курьезное" вещество Ирэн Кюри с 3,5-часовым
периодом полураспада, столь похожее на лантан, состоит, по существу, из
изотопа лантана с массовым числом 141.
В более поздние годы Отто Хан неустанно рассказывал историю поисков
псевдоэлементов 93--97, которая привела к открытию деления ядра, как
поучительный пример научных заблуждений. При этом он не боялся самокритики;
свои воспоминания он назвал: "Ложные трансураны. К истории одной научной
ошибки".
Искусственные элементы
При обстреле урана тепловыми нейтронами из него образуются более легкие
элементы с порядковыми номерами 35--65: это заставляло надеяться, что среди
обломков будут найдены также изотопы элементов 43 и 61. Если вспомнить
состояние вопроса получения элементов 43, 61, а также 85 и 87 в 1930 году,
то можно было уловить заметный прогресс. Прежде всего, подтвердилось
подозрение, что элементы 43 и 61 являются нестойкими веществами, которые
"вымерли". Что касается элементов 85 и 87, то уже довольно давно их признали
распавшимися радиоактивными веществами.
В 1934 году физик Иозеф Маттаух нашел эмпирическое правило, которое
позволяет оценить устойчивость ядер изотопов. Согласно правилу Маттауха не
может существовать второго устойчивого изотопа, если заряд его ядра
отличается только на единицу от заряда ядра известного устойчивого изотопа с
тем же массовым числом. Эта закономерность дополняет правило Харкинса, по
которому элементы с нечетным порядковым номером (то есть нечетным числом
протонов и электронов) распространены на Земле существенно реже, поскольку
мала устойчивость их ядер.
По отношению к элементам 43 и 61 правило Маттауха можно изложить
следующим образом. Исходя из их положения в периодической системе, массовое
число элемента 43 должно быть около 98, а для элемента 61 -- около 147.
Однако уже были известны устойчивые изотопы для элементов 42 и 44, а также
для элементов 60 и 62 с массами от 94 до 102 и соответственно от 142 до 150.
Поскольку второй устойчивый изотоп с тем же массовым числом не может
существовать, то элементы 43 и 61 должны иметь только нестабильных
представителей. Несомненно, что когда-то элементы 43 и 61 были на Земле в
достаточном количестве. Когда возникла наша Солнечная система, то путем
сочетания протонов и нейтронов образовались все элементы. Однако за время
существования Земли -- 4,6 миллиардов лет -- их неустойчивые представители
постепенно совсем исчезли. Исключение составляют только те радиоактивные
элементы, которые могли постоянно пополняться в пределах естественного
радиоактивного ряда, ибо их исходные вещества -- уран или торий -- еще
существуют на Земле, благодаря своим периодам полураспада, насчитывающим
миллиарды лет. Элементы 43 и 61 к этим естественным радиоактивным рядам не
относятся. Лишь в том случае, если имеется долгоживущий изотоп этих
элементов, можно было бы надеяться обнаружить его радиохимические следы.
В то время как некоторые ученые все еще занимались ложными
трансуранами, другим исследователям удалось найти вожделенные элементы 43 и
87. Вот история их открытия... В 1936 году Эмилио Сегрэ после женитьбы
покинул Ферми и его коллег и уехал в Палермо, прежнюю столицу Сицилии. В
тамошнем университете ему предложили кафедру физики. В Палермо, к своему
большому сожалению, Сегрэ не смог продолжать изыскания, начатые с Ферми. В
университете не было никакого оборудования для радиоактивных исследований.
Быстро приняв решение, итальянский ученый поехал в Америку, чтобы
ознакомиться с Калифорнийским университетом в Беркли, который славился самым
лучшим оборудованием. В то время там находился единственный в мире
циклотрон. "Те источники радиоактивности, которые я увидел, были поистине
поразительными для человека, работавшего до этого только с
Ra-Ве-источниками",-- вспоминал физик.
Особенно заинтересовался Сегрэ отклоняющей пластиной циклотрона. Она
должна была направить поток ускоренных частиц в требуемом направлении. За
счет столкновений с частицами высокой энергии -- ускорялись дейтроны -- эта
пластина очень сильно разогревалась. Поэтому ее пришлось изготовить из
тугоплавкого металла -- молибдена. На этот металлический молибден,
бомбардируемый дейтронами, и обратил свое внимание гость из Италии. Сегрэ
предположил, что из молибдена, 42-го элемента, в результате обстрела
дейтронами могли, быть может, образоваться изотопы все еще неизвестного
элемента 43. Возможно, по уравнению:
[96]Мо + D = [97]Х + n
Природный молибден является смесью шести устойчивых изотопов. Сегрэ
предположил: а вдруг один из шести возможных радиоактивных изотопов элемента
43, в которые теоретически мог бы превратиться молибден,-- хотя бы один --
оказался настолько долгоживущим, чтобы выдержать морское путешествие в
Сицилию. Ибо итальянский физик намеревался заниматься поисками элемента 43
только в институте на родине.
Исследователь пустился в обратный путь, имея в кармане кусок
молибденовой пластины от циклотрона в Беркли. В конце января 1937 года он
начал исследования при поддержке минералога и химика-аналитика Перрье. Оба,
действительно, нашли радиоактивные атомы, которые по химическим свойствам
можно было поместить между марганцем и рением. Количества экамарганца,
которые вновь искусственно возродились на Земле благодаря исследовательскому
гению человека, были невообразимо малы: от 10-10 до 10-12 г 43-го элемента!
Когда в июле 1937 года Сегрэ и Перрье доложили о синтезе первого
искусственного элемента, давно вымершего на Земле -- это был день, вошедший
в историю. Для элемента 43 позднее нашли очень точное наименование:
технеций, происходящее от греческого technetos -- искусственный. Можно ли
будет когда-либо получить его в весомых количествах и подержать в руках?
Вскоре удалось ответить на этот вопрос положительно, когда обнаружилось, что
при делении урана возникают изотопы 43 с относительно высоким выходом.
Особое внимание привлек изотоп с массовым числом 101 и периодом полураспада
14 мин. Предполагали, что вещество Ферми с периодом полураспада 13 мин,
мнимый элемент 93, должен был быть изотопом элемента 43.
Естественные радиоактивные ряды имеют окончательный вид -- в этом никто
больше не отваживался сомневаться, в особенности после
масс-спектрографической идентификации урана-235 Демпстером. Однако имелось
слабое место в ряду уран -- актиний. Прошло более двадцати лет с тех пор,
как в этом ряду отметили "неточность", которая была почти что предана
забвению. Еще в 1913/1914 годах на это несовпадение наткнулись английский
химик Крэнстон и австрийские исследователи радиоактивности Майер, Хесс и
Панет при изучении актиния. В качестве бета-излучателя актиний, как
известно, превращается в радиоактиний, то есть в изотоп тория. Когда ученые
изучали процесс превращения, они всегда наблюдали слабое альфа-излучение.
Эту остаточную активность (примерно 1 %) обнаруживал и Отто Хан в опытах по
получению чистого актиния. "Я не мог решиться на то, чтобы придать значение
этой небольшой величине",-- сообщил Хан позднее. Он считал, что это, скорее
всего, примесь.
Прошло много лет. Французская ученая Маргарита Перей, сотрудница
знаменитого Радиевого института в Париже, снова пошла по этому следу, очень
тщательно очистила фракции актиния и в сентябре 1939 года смогла доложить об
удачном выделении нового радиоактивного изотопа. Это был столь долго
отсутствовавший элемент 87, тот альфа-излучающий побочный продукт, который
дает остаточную однопроцентную активность актиния. Мадам Перей нашла
разветвление в уже заполненном ряду, ибо изотоп элемента 87 точно так же
превращается в актиний X, как и известный радиоактиний. По предложению Перей
элемент 87 назвали францием в честь ее родины.
Правда, химики и по сей день не достигли больших успехов в изучении
элемента 87. Ведь все изотопы Франция -- короткоживущие и распадаются в
течение миллисекунд, секунд или минут. По этой причине элемент поныне
остался "неинтересным" для многих химических исследований и практического
использования. При необходимости его получают искусственно. Конечно, франций
можно "получать" и из естественных источников, но это -- сомнительное
предприятие: 1 г природного урана содержит только 10[-18] г
франция!
Когда периодическая система была открыта, недоставало 23-х элементов,
теперь -- только двух: 61- и 85-го. Как шла дальше охота за элементами?
Летом 1938 года Эмилио Сегрэ вновь поехал в Беркли. Он намеревался изучить
короткоживущие изотопы элемента 43. Безусловно, такие исследования надо было
предпринять на месте. Изотопы с малым периодом полураспада не "пережили" бы
путь в Италию. Едва прибыв в Беркли, Сегрэ узнал, что возвращение в
фашистскую Италию стало для него невозможным из-за расового террора. Сегрэ
остался в Беркли и продолжал там свои работы.
В Беркли с более мощным циклотроном можно было разогнать альфа-частицы
до высоких энергий. После преодоления так называемого порога кулоновского
взаимодействия эти альфа-частицы были в состоянии проникнуть даже в ядра
тяжелых атомов. Теперь Сегрэ увидел возможность превратить висмут, элемент
83, в неизвестный элемент 85. Совместно с американцами Корсоном и Маккензи
он бомбардировал ядра висмута альфа-частицами с энергией 29 МэВ, чтобы
провести следующий процесс:
[209]Bi + [4]He = [211]X + 2n
Реакция осуществилась. Когда исследователи закончили первую совместную
работу, 1 марта 1940 года, они лишь осторожно высказали мысль "о возможном
получении радиоактивного изотопа элемента 85". Вскоре после этого они были
уже уверены: искусственно получен элемент 85, до того как он был найден в
природе. Последнее посчастливилось сделать лишь несколько лет спустя
англичанке Лей-Смит и швейцарцу Миндеру из института в Берне. Им удалось
показать, что элемент 85 образуется в радиоактивном ряду тория в результате
побочного процесса. Для открытого элемента они выбрали название
англо-гельвеций, которое было раскритиковано как словесная несуразица.
Австрийская исследовательница Карлик и ее сотрудник Бернерт вскоре нашли
элемент 85 в других рядах естественной радиоактивности, тоже как побочный
продукт. Однако право дать наименование этому элементу, встречающемуся лишь
в следах, оставалось за Сегрэ и его сотрудниками: теперь его называют астат,
что в переводе с греческого означает непостоянный. Ведь самый устойчивый
изотоп этого элемента обладает периодом полураспада только 8,3 ч.
К этому времени профессор Сегрэ пытался также синтезировать элемент 61.
Между тем стало ясно, что оба соседа этого элемента по периодической
системе, неодим и самарий, слабо радиоактивны. Сначала это казалось
удивительным, так как в то время считали, что радиоактивность присуща
наиболее тяжелым элементам. Неодим, 60-й элемент, излучал бета-лучи,
следовательно, должен был превращаться в элемент 61. Тот факт, что этот
неизвестный химический элемент до сих пор не могли выделить, вероятно,
объяснялся его быстрым радиоактивным распадом. Что же делать? Здесь выход
заключался опять-таки в искусственном получении искомого элемента. Раз
элемент 61 нельзя было найти в природе, физики попытались его синтезировать.
В 1941/42 годах ученые Лоу, Пул, Квилл и Курбатов из Государственного
университета в Огайо бомбардировали редкоземельный элемент неодим
дейтронами, разогнанными в циклотроне. Они обнаружили радиоактивные изотопы
нового элемента, который назвали циклонием. Однако это был лишь след,
оставленный на фотопленке.
Каковы были успехи Эмилио Сегрэ? Он облучал альфа-лучами празеодим --
элемент 59. Однако переработка безусловно синтезированных им изотопов
элемента 61 оказалась слишком сложной. Выделение их из других редкоземельных
элементов не удалось.
Об одном безрезультатном исследовании пришло известие из Финляндии. Еще
в 1935 году химик Эреметсе начал анализировать концентраты смеси оксидов
самария и неодима на природное содержание в них 61-го элемента. Для этой
цели было переработано несколько тонн апатита.
Первый этап борьбы за 61-й элемент имел ничейный результат. Нельзя было
даже принять предложенное название "циклоний".
Нептуний
Если не учитывать предстоявшую идентификацию 61-го элемента, то к
началу 40-х годов были известны все 92 элемента периодической системы.
Свободных клеток в ней уже не было. А как обстояло дело со спорными
элементами по другую сторону урана? После распутывания вопроса с продуктами
деления урана от прежних "трансуранов" не осталось почти ничего. Имелось
лишь одно-единственное исключение: изотоп урана с массовым числом 239,
обнаруженный Отто Ханом с сотрудниками еще в марте 1936 года, был истинным.
Хотя это был не новый элемент, но он излучал бета-лучи, следовательно,
должен был переходить в следующий, 93-й элемент.
Как мы уже знаем, исследователи из Берлин-Далема не обнаружили 93-й
элемент, потому что они располагали лишь слабыми источниками нейтронов. Они
и не искали его более. Ведь ученые считали, что идентифицировали другой
представитель элемента 93-- экарений. В то время они еще не подозревали, что
это были ложные трансураны. Примешалась, конечно, и неудача: ведь Отто Хан и
его сотрудники уже тогда могли бы получить определимое количество 93-го
элемента после длительного облучения нейтронами больших количеств урана.
Позднее, оценивая "почти трагическую путаницу", которой тогда были все
охвачены, Отто Хан сказал: "Тут от нас ускользнула Нобелевская премия". Ибо
американцы Мак-Миллан и Абельсон были удостоены Нобелевской премии за
открытие 93-го элемента, о котором они дали знать 15 июня 1940 года.
Как же пришли к открытию элемента 93, означавшему прорыв в неизвестную
область химии? После опубликования работ Хана и Штрасмана о делении ядра
американский физик Эдвин Мак-Миллан захотел определить пути пробега богатых
энергией осколков урана. В Беркли для этого он располагал в основном тремя
вещами: циклотроном, некоторым количеством соли урана и... пачкой папиросной
бумаги. Циклотрон работал как источник нейтронов: разогнанные дейтроны
падали на бериллий и высвобождали поток нейтронов, во много раз превышающий
тот, что могли получить Хан и Штрасман. Мак-Миллан смочил первый листочек
папиросной бумаги раствором соли урана и направил на него поток нейтронов.
Листочки, лежащие под ним, должны были уловить разлетающиеся на различные
расстояния продукты деления.
К своему удивлению, американский физик нашел два источника активности,
резко отстоящих от других продуктов деления, с периодами полураспада 23 мин
и 2,3 дня. Уже известно было вещество с периодом полураспада 23 мин. Это был
найденный Ханом [239]U. Другие атомы, распадавшиеся с периодом
полураспада 2,3 дня, могли, как заключил Мак-Миллан, принадлежать продукту,
образующемуся из бета-излучателя, то есть из [239]U, а именно
новому элементу 93.
Будучи физиком, Мак-Миллан чувствовал себя недостаточно компетентным,
чтобы установить химические свойства изотопа, которые позволили бы дать
однозначную идентификацию этого элемента. В это время ему попался на глаза
Эмилио Сегрэ. Тот предложил провести необходимые химические исследования. В
июне 1939 года Сегрэ доложил о результатах. Многозначительным является уже
сам заголовок его сообщения: "Неудачный поиск трансурановых элементов".
Сегрэ пришел к совершенно отрицательному выводу: активность в 2,3 дня
принадлежит не трансурану, а редкоземельному элементу, то есть одному из
обычных продуктов деления урана. Лишь последующие исследования должны были
показать, что даже такой опытный исследователь, как Сегрэ, может однажды
ошибиться.
Неудача не отняла решимости у Мак-Миллана. К счастью, в начале 1940
года в Калифорнийский университет приехал на несколько дней его соученик,
Филип Абельсон, с тем, чтобы провести там каникулы. Однако из отпуска ничего
не получилось. Работая неустанно день и ночь, Мак-Миллан и Абельсон
утвердились во мнении, что открыт первый элемент за пределами классической
периодической системы: элемент 93! Сложный путь открытия привел Мак-Миллана
и Абельсона к мысли назвать этот элемент, находящийся по другую сторону
урана, нептунием. Когда в 1781 году была открыта планета Уран, считали, что
нашли самую последнюю и наиболее удаленную от Земли планету. Однако
планетная система постепенно выдавала свои дальнейшие тайны. Расчеты
француза Леверье на основе отклонений в орбите Урана показали, что по другую
сторону Урана должна вращаться еще одна планета. Леверье точно указал, где
ее нужно искать. В 1846 году астрономом Галле была открыта на небосводе
новая планета -- Нептун.
Два атомарных пушечных ядра
Исследователи, в том числе и Отто Хан, занимались идентификацией
осколков урана; однако физиков, прежде всего, интересовала другая проблема:
какой энергией вызывалось поразительное деление ядра урана и каков был
энергетический баланс?
Благодаря переписке с профессором Ханом, Лиза Мейтнер была первой из
посторонних информирована о делении урана. Об этом еще не знали даже физики
из института Отто Хана, а Лиза Мейтнер уже размышляла о необычном ядерном
эффекте. Эту проблему она обсуждала со своим племянником, Отто Робертом
Фришем. Фриш, эмигрант, как и Лиза Мейтнер, начал работать в институте
Нильса Бора в Копенгагене. Исследователи первыми дали физическое толкование
эффекта, открытого Ханом и Штрасманом, и указали, что такое "разваливание"
на два близких по величине осколка энергетически возможно:
U + n = Ва + Kr
Из дефекта массы, возникающего при делении такого рода, Мейтнер и Фриш
по уравнению Эйнштейна Е = тс[2] рассчитали энергетический
эффект. Они получили неправдоподобно большую величину: 200 МэВ на 1 моль
атома! Такую энергию еще не наблюдали ни в процессах ядерных превращений, ни
тем более в химических реакциях: например, 1 моль атома углерода при
сгорании дает лишь 2 эВ энергии, а 1 моль атома урана при своем делении -- в
сто миллионов раз больше!
Нильс Бор, которому Фриш сообщил о новом физическом ядерном процессе, в
первый момент потерял дар речи. Затем великий теоретик ударил себя по лбу:
"Как мы только могли это просмотреть!"
26 января 1939 года в Вашингтоне состоялась конференция по
теоретической физике, на которую был приглашен и Бор. Он доложил собранию о
делении атома урана. Не успел он договорить до конца, как несколько
американских физиков вскочили, как ужаленные, со своих мест. В смокингах
ворвались они в свои лаборатории, чтобы собственноручно проверить открытие,
которое они прозевали.
Бор и Ферми были приглашены принять участие в одном из таких
экспериментов. До позднего вечера взгляды физиков были прикованы к
осциллографу, светящиеся импульсы которого указывали на выделяющуюся энергию
распада и были столь мощны, что, казалось, они взорвут экран. Было ли это
выделением атомной энергии? Велись торопливые дискуссии. Спросили у Ферми,
почему он не заметил деления урана еще в 1934 году? Осколки, богатые
энергией, должен был обнаружить даже его примитивный счетчик. Ферми схватил
себя за голову: конечно же! Но он в свое время поместил фольгу между
облученным ураном и счетчиком, для того, чтобы устранить естественную
радиоактивность урана. Тончайшую фольгу, однако она поглощала и осколки. Вот
и осталось деление ядра в то время не открытым.
30 января 1939 года под крупным заголовком "Огромная энергия,
высвобожденная атомом урана" газета "Нью-Йорк таймс" сообщила об удачных
повторных экспериментах американцев: "Деление атома урана на две части, из
которых каждая представляет собой гигантское атомарное пушечное ядро с
огромной энергией в 100 000 000 электронвольт[67],-- это
величайшая энергия атома, которая когда-либо высвобождалась человеком".
К началу 1939 года большинство ученых уже знали, что в результате
бомбардировки нейтронами отдельные атомы урана могут делиться с выделением
энергии. Однако это не была еще цепная реакция, вызывающая волну атомного
распада, как того опасались Резерфорд и другие. Конечно, была найдена
"спичка" для поджигания атомного огня; однако "огонь" угасал, как только
удаляли источник нейтронов. Для поддержания деления урана требовалась
постоянно возобновляющаяся реакция, протекающая самопроизвольно, без
дополнительного подвода энергии извне. Вечно сияющие звезды и наше Солнце
являются практическими примерами того, что для непрерывного выделения
атомной энергии необходимы определенные ядерные цепные реакции.
Для осуществления такой цепной реакции при делении урана нужно было,
чтобы при каждом делении образовались дополнительные нейтроны, которые могли
бы, в свою очередь, разрушить новые атомы уран