прошлого и надо будет воскрешать его вновь,-- так же,
как в свое время тайный рецепт алхимиков для получения золота?
Выдающийся химик Эмиль Фишер, скончавшийся в 1919 году, вспоминал, что
еще в 1898/99 годах он вместе с физиком Фридрихом Кольраушем проводил опыты,
которые имели своей целью ни больше, ни меньше, как превращение элементов
друг в друга. Оба ученых уже тогда предполагали, что такого рода превращения
элементов осуществляются на Солнце. Они хотели подтвердить эту гипотезу
экспериментом. Фишер и Кольрауш воздействовали катодными лучами на водород
при пониженном давлении и надеялись с помощью спектрального анализа
обнаружить его превращение в благородный газ гелий. К сожалению, они не
достигли определенного результата.
Великий физик Резерфорд также не сомневался в том, что такое
превращение водорода в гелий может происходить; это можно увидеть из его
обращения к British Association[74] в сентябре 1923 года в
Ливерпуле. По словам Резерфорда, источником энергии Солнца и звезд является
синтез гелия из водорода. Обнаруживаемый при этом дефект массы должен
выделяться в виде энергии. Хотя Резерфорд был вполне уверен в реальности
такого превращения элементов, он мало верил в то, что подобный космический
процесс можно будет воспроизвести на Земле. Было бы "очень сложно, даже
невозможно получить гелий из водорода в лабораторных условиях".
Не прошло и трех лет, как эта проблема, казалось, была решена. Панету и
Петерсу из Химического института Берлинского университета удалось провести
такое превращение в лаборатории! В своих рассуждениях оба ученых исходили из
энергетического баланса следующей реакции:
4*1,008 г (Н) = 4,003 г (Не) + 0,029 г
Дефект массы в 0,029 г, который испытывает водород при превращении в
моль атомов гелия приводит к выделению энергии -- около 2,7*10[9]
кДж по формуле Эйнштейна. Таким образом, при синтезе 4 г (1 моль атомов)
гелия из водорода выделяется столько же энергии, сколько при сгорании более
80 т высококачественного каменного угля. Поэтому оба химика сделали вывод,
что вряд ли надо вообще подводить энергию для того, чтобы заставить идти эту
реакцию. Атомы Н должны превратиться в гелий просто с помощью катализатора,
например палладия. Образовавшийся гелий можно обнаружить спектральным путем
уже в количестве 10[-8] -- 10[-10] мл.
Оба исследователя приступили к работе. Опыт был так продуман, чтобы
гарантировать невозможность проникновения в вакуумную аппаратуру природного
гелия из воздуха. Панет и Петерс получили положительные результаты, то есть
обнаружили гелий. В августе 1926 года они сообщили, что найденный гелий
образовался в результате воздействия палладия на водород. Было ли это
разрешением вопроса, первым шагом к появлению искусственного Солнца на
Земле? Сообщения в прессе спешили указать на практическую сторону открытия:
неограниченная возможность получения редкого гелия могла явиться неожиданным
стимулом для воздухоплавания, ибо этот негорючий газ можно безопасно
использовать для заполнения воздушных шаров и аэростатов.
Однако, куда же девалась та огромная энергия, которая выделяется при
синтезе гелия? Берлинские исследователи, к своему великому сожалению, ее не
обнаружили: ни теплоты, ни радиоактивного излучения. Это было их слабым
местом. Профессор Панет и его сотрудники занимались этим вопросом в течение
двух лет. В начале 1927 года, уже через несколько месяцев после первой
публикации, они сообщили о некоторых сомнениях: асбест -- основа для
палладиевого катализатора -- содержит, как все минералы, следы гелия. Даже
стекло аппаратуры содержит гелий. В вакууме все эти следы благородного газа
должны диффундировать в реакционный сосуд. К сожалению, появление гелия в их
опытах следует объяснить попаданием естественной примеси. Позднее Панет с
сотрудниками обнаружили даже неон, который никак не должен был образоваться
при синтезе. В своей последней работе от сентября 1928 года разочарованные
ученые объявили, что результаты их многочисленных опытов являются неверными:
наличие неона доказывает, что в аппаратуру проникли следы воздуха.
26 марта 1951 года. Возбуждение в Буэнос-Айресе. Президент Хуан Перон
собрал всю мировую прессу, чтобы объявить, что Аргентина имеет намерение
стать атомной державой. Несколько недель тому назад в центре атомных
исследований страны была якобы в промышленном масштабе осуществлена
термоядерная реакция. Рядом с диктатором с самодовольной улыбкой на устах
находился австрийский физик Рональд Рихтер, отныне государственный подданный
Аргентины. Это был тот человек, который уже много лет по поручению Перона
работал над проблемой ядерного синтеза и теперь обнародовал эту блестящую
победу. В ответ на вопросы журналистов Рихтер гордо объявил: "Я умею
вырабатывать атомную энергию без урана". На глазах у собравшихся
пресс-атташе президент прикрепил ему на грудь высший знак отличия страны:
медаль Перониста.
Перон решился на некоторые сообщения. На острове Хемуль в глубине
страны Рихтер построил стенд для атомных испытаний. Эта область отгорожена и
недоступна для общественности. Капиталовложения в предприятие Перон оценил
свыше 100 миллионов долларов. Удача якобы оправдала столь большие затраты.
Сенсационное сообщение об удавшемся контролируемом термоядерном
синтезе, как молния, распространилось по всему миру. Расспрашивали Манфреда
фон Ардена, находившегося в ту пору в СССР, о личности этого Рональда
Рихтера. Было известно, что во время войны в институте Ардена в Берлине
работал физик с той же фамилией. Был ли это тот же Рихтер? Предположение
подтвердилось. Мнение Ардена о Рихтере как о научном работнике было не
слишком высоким: он охарактеризовал его как фантазера.
Вскоре выяснилось, что диктатор Перон попался на удочку шарлатана,
которому, хотя и удалось "атомизировать" 100 миллионов долларов, но было не
под силу получить атомную энергию путем термоядерного процесса.
Надувательство было обнаружено комитетом по расследованию, созданным
аргентинским парламентом. Вот еще один пример того, как "алхимик" смог
водить за нос своего повелителя. Рихтер, в течение многих лет обласканный
как авторитетный атомщик, осыпанный деньгами и почестями, обладатель многих
вилл и бронированной машины, подаренной президентом, впал в немилость.
Глава государства ненадолго пережил на своем посту бывшего фаворита. В
сентябре 1955 года участь Перона была решена произошедшим военным
переворотом. Предполагают, что одной из причин падения аргентинского
диктатора была афера его "придворного алхимика". Во всяком случае "алхимика"
милостью Перона можно заслуженно поставить в один ряд с его коллегами типа
Зейлера, Эмменса и Таузенда. Во все времена, вплоть до наших дней, они
дурачили свои жертвы. Их жизнь, полная приключений, могла бы служить сюжетом
для детективного романа. Мы привели лишь некоторые эпизоды из жизни этих
мошенников, полное же описание их судеб ждет своей книги. Когда же она будет
написана, эта книга -- "Путь алхимика"?
На пути к неисчерпаемой энергии
В начале 50-х годов мир был напуган взрывом водородной бомбы. Это были
первые неуправляемые термоядерные реакции, выпущенные на волю человеком.
Кое-кто считал, что это прогресс на пути к контролируемому ядерному синтезу;
теперь, мол, требуется лишь "обуздать" Н-бомбу. Какая ошибка! Ведь бомба
остается бомбой. Цель ни в коем случае не оправдывает средства. С тех пор
прошло уже более четверти века. Учитывая бурное развитие науки и техники,
можно сегодня с полным правом спросить себя: почему мы не продвинулись
вперед с созданием искусственного Солнца на Земле? Что нужно еще сделать,
чтобы разрешить, наконец, великую проблему трансмутации -- превращение
водорода и его изотопов в гелий?
Когда Рональд Рихтер в 1951 году пытался осуществить свой "ядерный
синтез", он рассчитывал произвести фурор. Но один известный ученый сказал
тогда, что господину Рихтеру надо было сделать возможными три невозможные
вещи: достичь температуры в несколько десятков миллионов градусов без
урановой бомбы, поддерживать эту температуру в течение нескольких секунд и,
наконец, создать такое давление, которое имеется в глубине звезд. Однако
никто не может достать звезду с неба, даже если он -- любимец диктатора!
Перечисленные условия являются необычайно жесткими, но они
действительно необходимы. Ядра атомов водорода или его изотопов должны
слиться, образуя гелий. Однако они отталкивают друг друга из-за своих
зарядов. Если же, несмотря на это, ядра атомов подойдут очень близко друг к
другу и в конце концов соединятся, то они должны находиться в состоянии
плазмы, когда имеются лишь "голые" ядра и свободные электроны. Такое особое
состояние материи появляется лишь при температурах в миллионы градусов. В
плазменном состоянии существует несколько возможностей превращения водорода
в гелий. Теория отдает предпочтение двум реакциям, которые исходят не из
обычного водорода, а из его изотопов -- дейтерия (D) и трития (Т):
D + Т = [4]He+ n + Энергия (1)
D + D = [3]He + n + Энергия (2), или
D + D = T + H + Энергия
Процесс (1) протекает в дейтериево-тритиевой плазме при температурах
свыше 40 миллионов градусов, в то время как реакция (2) для своего
поджигания требует температуры около 300 миллионов градусов. Следовательно,
все не так просто, как представляли себе в 20-х годах Панет и Петерс. Кроме
того, недостаточно получить 40 или 300 миллионов градусов, нужно, чтобы при
этих температурах плазма была удержана в стабильном состоянии какое-то
минимальное время -- около 1 с. Далее, для начала синтеза совершенно
необходимо определенное число частиц. Эти условия устанавливаются так
называемым критерием Лоусона: произведение времени удержания плазмы на
плотность частичек для реакции D с Т при рабочей температуре в 100 миллионов
градусов должно иметь значение 10[14] с/см[3]. Что это
означает? При температуре в 100 миллионов градусов 10[14]
реакционноспособных ядер атомов на кубический сантиметр должны быть удержаны
в течение, по крайней мере, одной секунды. Если это удастся, то термоядерный
реактор начнет работать.
При таких высоких требованиях экспериментальные трудности неизмеримо
возрастают. Само по себе проблемой является получение солнечных температур в
лабораторных условиях. Правда, в настоящее время можно достичь 100 миллионов
градусов, но лишь на доли секунды. Неразрешенными остаются прочие задачи:
стабильное удержание плазмы при высокой плотности частиц. При температурах в
несколько миллионов градусов частицы являются сверхбыстрыми. В доли секунды
плазма растекается и снова охлаждается. Ни один земной материал не может
существовать при этих температурах и удержать горячую плазму. В Солнечной
системе это удается лишь Солнцу в силу его большой массы и размеров:
гравитация удерживает солнечную плазму в космическом вакууме. Из-за проблемы
материала вопрос об удержании плазмы был заранее, казалось бы, обречен на
провал. К счастью, удалось найти изящное решение: плазму можно удержать
мощными магнитными полями.
Как обстоит дело с сырьем для будущих термоядерных реакторов? Этот
вопрос следует поставить с самого начала. Дейтерий в виде тяжелой воды
находится в Мировом океане практически в неограниченном количестве, правда
при "разбавлении" 1 : 6000. Если удастся провести D,D-синтез, то не будет
вообще никаких забот об исходном сырье, можно будет буквально "сжигать
море": 1 л обычной воды с ее естественным содержанием дейтерия дает столько
же энергии, сколько 300 л бензина. 1 г чистого дейтерия выделяет при синтезе
30 000 кВт энергии.
Несмотря на эти заманчивые цифры, полагают, что термоядерный
D,D-реактор будет иметь шанс на осуществление лишь в далеком будущем.
Непреодолимым препятствием является ныне температура плазмы в 300 миллионов
градусов. А вот эксперименты по термоядерному синтезу с дейтерием и тритием
могут быть проведены при более "доступных" температурах. Поэтому все усилия
концентрируются исключительно на последнем способе синтеза. Однако трития,
наиболее тяжелого изотопа водорода, в природе практически нет. Его можно
получить только искусственно в атомном реакторе, а в будущем, быть может, в
термоядерном реакторе. Исходным веществом является изотоп лития
[6]Li, который содержится в природном литии, к сожалению, только
в количестве 7,4 %. Он превращается в тритий при бомбардировке нейтронами:
[6]Li + n = T + [4]He
На практике в качестве горючего намереваются использовать дейтерид
лития (LiD), причем в термоядерном реакторе параллельно будут протекать
синтез трития и термоядерный синтез. Но хватит ли лития на Земле? Ответом
является условное "да". Природные запасы для атомных и термоядерных
реакторов -- уран, торий или литий -- встречаются приблизительно в
одинаковых количествах. В то же время тритий вызывает осложнения, поскольку
этот радиоактивный газ легко диффундирует и может проникнуть из реактора во
внешнюю среду. Кроме того, радиоактивность может возникать в самих
термоядерных реакторах: их металлические части, которые приходится время от
времени сменять, становятся радиоактивными за счет нейтронов, выделяющихся
при синтезе.
Первоначальное воодушевление в вопросе исследования термоядерного
синтеза, которое охватило ученых со времени Женевской конференции 1955 года,
вскоре сменилось некоторым спадом. Правда, через год И. В. Курчатов в
английском центре атомных исследований, в Харуэлле, доложил о новых
советских экспериментах с дейтериевой плазмой с температурой в миллион
градусов. Однако быстрых успехов не достигли ни в СССР, ни в Великобритании,
ни в США. Американцы в шутку назвали свою установку ядерного синтеза 1957
года perhapsotron. В вольном переводе это означает: "установка, работающая
по принципу: то ли будет, то ли нет".
На конференции по физике плазмы и контролируемому термоядерному синтезу
в сентябре 1961 года в Инсбруке один из ведущих специалистов, советский
физик Л. А. Арцимович, обратился ко всем участникам с сердечной речью. Наше
первоначальное предположение, сказал он, что двери в обетованную страну
сверхвысоких температур откроются при первом сильном напоре физиков,
оказалось столь же необоснованным, как надежда грешника попасть в рай, не
пройдя через чистилище. Однако едва ли можно сомневаться в том, что проблема
контролируемого термоядерного синтеза будет разрешена. Мы лишь не знаем,
сколько еще нам придется пребывать в чистилище.
"Пребывание в чистилище", по-видимому, закончилось в 1968 году. Н. Г.
Басов, один из изобретателей лазера, в руководимом им Физическом институте
АН СССР в Москве испытал новый вариант и обнаружил: лазерный луч,
сфокусированный на горючем из LiD, запускает реакции термоядерного синтеза.
Для этого вовсе не нужны столь высокие температуры. Достаточно сжать шарики
LiD ударными волнами, например мощными лазерными импульсами, направленными
со всех сторон на шарик ядерного горючего. Тогда за долю секунды, которой
достаточно для запуска процесса ядерного синтеза, плотность горючего
многократно возрастает по сравнению с исходной величиной.
В 1969 году французские ученые успешно испытали этот метод на
замороженном дейтерии. Когда они направили на дейтериевый лед узкий пучок
лучей лазера мощностью в 4 ГВт, они смогли обнаружить, что около 100 атомов
вступили в реакции синтеза за один "выстрел" лазера. Являлось ли это
успешным началом?
В 1972 году ученые США приподняли завесу молчания над аналогичными
экспериментами. Они заполняли дейтерием и тритием микробаллончики --
крошечные полые стеклянные шарики, которых на 1 кг нужно 2 миллиона штук,--
и с помощью лазерных импульсов вызывали в них реакции термоядерного синтеза.
Военные круги США думали сначала, что таким путем, с помощью одних только
лучей лазера, они смогут поджигать водородные бомбы -- без урановой бомбы.
Однако расчеты показали, что для этого потребовались бы лазеры в тысячи или
десятки тысяч раз более мощные, чем те, которыми располагали. Уже нынешние
мощные лазерные установки занимают большую площадь, каких же размеров должны
быть лазеры для Н-бомб, столь привлекающие футурологов?
Пример тунгусского метеорита показывает, что поджиг термоядерной бомбы
может произойти и "совершенно естественным путем". 30 июня 1908 года в
сибирской тайге, в районе Подкаменной Тунгуски, произошла "катастрофа века".
Слепящий огненный шар со свистом опустился на Землю и взорвался со страшной
силой. Даже на расстоянии 300 км из окон повылетали стекла. В Иркутске,
Ташкенте, Потсдаме и в ряде других мест зарегистрированы были сейсмические
волны, которые несколько раз обошли земной шар. В течение недели в Европе
стояли "белые ночи", явившиеся следствием взрыва. В Петербурге и Лондоне
прохожие могли ночью на улице читать газету. Что произошло? Наткнулся ли на
Землю большой метеорит? Когда, годы спустя, проникли к месту взрыва,
оказалось, что лес в окружности 40 км уничтожен, а вокруг -- следы больших
разрушений. Поразительно, что до сего времени так и не нашли ни малейших
остатков метеорита!
С тех пор в ходу было много объяснений, часто фантастических: это был
гигантский снежный шар из Космоса, разрушенный космический корабль,
гигантская стая мошек или же обломок антиматерии из другой Галактики,
который полностью превратился в излучение при столкновении с "нашей"
материей. Некоторые поговаривали об атомном взрыве.
В Аризоне спилили 300-летнюю сосну Дугласа и исследовали ее годичные
кольца на содержание радиоактивного углерода, который образуется при ядерном
взрыве и распространяется по всему миру. Действительно, в кольце,
соответствующем 1909 году, обнаружили повышенное содержание углерода-14.
Специалисты рассчитали -- взрывная сила должна была составить 40 Мт, что
соответствует большой Н-бомбе. Идея о термоядерном взрыве долгое время
будоражила умы, пока не возник вопрос -- кто же, собственно, мог сбросить
"бомбу", к тому же еще в 1908 году! Внеземная цивилизация?
К возможным объяснениям добавим еще одно: да, это был термоядерный
взрыв. Огромный снежный шар из Космоса при столкновении с земной атмосферой
разогрелся настолько, что был достигнут критерий Лоусона. Ядра водорода и
дейтерия сначала мирно слились с образованием трития, гелия, лития. При
дальнейшем повышении плотности смеси из-за продолжающегося сжатия синтез
вдруг приобрел характер взрыва. Космическая водородная "бомба" взорвалась --
совершенно естественным путем.
Вернемся все же к исходному вопросу. Термоядерный синтез с помощью
лазеров таит в себе много проблем. Профессор Н. Г. Басов, однако, смотрит на
это оптимистически -- с тех пор, как в его институте в Москве функционирует
установка лазерного синтеза "Дельфин". В ней советские ученые собираются с
помощью лазерных молний довести твердый водород до такой плотности, что он
за доли секунды станет в пять раз более плотным, чем тяжелейший из природных
элементов -- уран. Несмотря на несомненные экспериментальные успехи, еще
далеко до создания электростанции на основе лазерного синтеза. Если бы
принцип оправдал себя, все равно для термоядерного реактора, вырабатывающего
энергию, потребовались бы "баллончики" другого размера: диаметром в
несколько сантиметров, вместо 0,1 мм. Чтобы поджечь такие шары горючего
недостаточно мощности нынешних лазеров. Это удивительно: ведь современные
лазеры, выделяющие энергию в 4--5 кДж в виде молний за миллионные доли
секунд, дают в итоге столько же энергии, сколько 200--250 крупных
электростанций в 1 000 МВт каждая. В то же время для экономично работающих
термоядерных реакторов потребовались бы лазеры приблизительно в 1 000 кДж, а
экспериментально до сих пор было достигнуто максимально 10,2 кДж. Мы
подчеркиваем, "экономично", ибо пока во всех, даже положительных,
экспериментах неизмеримо больше энергии затрачивается, чем получается.
Значит, надо продолжать творческий поиск более мощных лазерных установок.
Помимо ядерного синтеза, индуцируемого лазером, перспективным является
также исходный вариант -- нагрев D, Т-плазмы, удерживаемой магнитным полем.
Советская установка типа "Токамак" в настоящее время испытана во всех
странах, использующих процесс термоядерного синтеза, и признана успешным
вариантом. В июне 1975 года в Институте атомной энергии им. И. В. Курчатова
в Москве начала работать установка "Токамак 10". Для создания ее
колоссального магнитного поля требуются мощности в 130 МВт. Другой агрегат,
"Токамак 7", благодаря магнитным катушкам из сверхпроводников требует для
обеспечения магнитного поля лишь около тысячной доли этой мощности. "Токамак
10" и его американский вариант Tokamak PLT (Princeton Large
Torus[75])*, видимо, последние образцы экспериментальных
термоядерных установок. При "генеральной репетиции" с "Токамаком 10" в
феврале 1976 года советские специалисты достигли устойчивой реакции ядерного
синтеза с дейтерием. Температура плазмы во время процесса составила семь
миллионов градусов, что дало значение критерия 1012 с/м3.
Между тем в более поздних опытах на "Токамаке 10" было достигнуто 13
миллионов градусов. При этом за полсекунды, потребовавшейся для начала
реакции, установка израсходовала столько электроэнергии, сколько ее
вырабатывает электростанция мощностью в 200 МВт за то же время. Мощность
"Токамаков" во всем мире год за годом подходит все ближе к той интересной
области на диаграмме Лоусона, которая обещает осуществить "Солнце на Земле".
В августе 1978 года в мировой прессе появились сообщения, что ученые из
университета в Принстоне (США) достигли большого успеха: за долю секунды в
Tokamak PLT удалось достичь температур Солнца -- 60 миллионов градусов.
Безусловно, это значительный шаг к решению проблемы. В области исследования
мирного термоядерного синтеза американские ученые плодотворно сотрудничают с
советскими исследователями. Докладывая об успешном эксперименте, научные
работники США подчеркивали, что принцип работы плазменного реактора
"Токамак" -- разработка советских ученых.
Как пойдет дело дальше? В СССР сейчас конструируют "Токамак 20". Он
будет опытным реактором, вырабатывающим термоядерную энергию.
Солнце и звезды служат нам "сияющим примером" реальности
контролируемого ядерного синтеза. Поэтому наука стремится соорудить эти
неиссякаемые источники энергии на Земле. Решающий вклад для разрешения
мировой энергетической проблемы мы видим сегодня в овладении контролируемой
термоядерной реакцией.
"Искусство изготовления золота" путем превращения элементов
практикуется в настоящее время больше, чем когда-либо, и во многих
вариантах. Конечно, "золото" приходится заменить другими понятиями,
например, словом "синтетические элементы". Во многих отношениях они стали
для нас драгоценнее, чем презренный металл,
Превращение элементов, осуществленное с целью синтеза новых химических
элементов, привело к высвобождению энергии атома и указало несколько
доступных путей для ее получения. Удавшееся превращение элементов принесло
человечеству обширные познания. Теперь надо добиться того, чтобы эти знания
были использованы на пользу человечества и для прогресса общества.
1 Луллий Раймонд (или Раймундо Лулл) (ок. 1235--ок. 1315) -- выдающийся
испанский мыслитель и естествоиспытатель. Прожил необычайную жизнь. Он
родился в городке Пальма на острове Мальорка. Еще мальчиком был приближен к
арагонскому двору, а позже стал королевским сановником и воспитателем
будущего правителя Мальорки Иакова II. До тридцати двух лет Луллий вел жизнь
повесы и дуэлянта. Но затем биография его внезапно переменилась. Он удалился
от мира, поселившись на вершине горы. В это время он пишет
богословско-математический трактат "Книга созерцания". Луллий поставил себе
целью дать логическое доказательство истинности христианства, превратив тем
самым веру в аксиоматизированную "науку". После 1274 года Луллий начинает
странствовать по Европе. В 1315 году в Тунисе, когда он проповедовал на
рыночной площади Евангелие, толпа забросала его камнями. Умирающего Луллия
подобрал генуэзский купец Стефан Колумб. Легенда гласит -- перед смертью
Луллий предсказал купцу, что его потомок откроет Новый Свет. Прим. реценз.
В историю культуры Луллий вошел как поэт, романист, основоположник
каталонского литературного языка. Ему также приписывают получение винного
камня (tartar), поташа из растительной золы, некоторых эфирных масел, "белой
ртути" (сулемы), мастики из белка и извести, очистку винного спирта и т.д.
2 Эдуард III (1312---1377)--английский король (с 1327 года) из династии
Плантагенетов. Воспользовавшись прекращением во Франции династии Капетингов,
Эдуард, будучи по материнской линии внуком французского короля Филиппа IV
Красивого, предъявил претензии на французский престол и в 1337 году объявил
Франции войну, которая вошла в историю под названием Столетней войны
(1337--1453). Прим. реценз.
3 Один фунт равен 0,453592 кг (около 453,6 г)
4 Ганза (от средне-нижненем. Hansa -- союз)-- торговый союз
северонемецких городов во главе с Любеком, существовавший в XIV--XVI веках
(1356--1669). Прим. реценз.
5 Рудольф II (1552--1612)-- император так называемой Священной Римской
империи, основанной в 962 году германским королем Оттоном I в результате
подчинения Северной и Средней Италии (с Римом). Впоследствии к Священной
Римской империи были присоединены и славянские земли. Проводил политику
жестокой католической реакции. Один из рьяных адептов алхимического
искусства. Прим. реценз.
6 Одна унция равна 28,34952 * 10-3 кг (около 28,35 г).
7 Август II (1670--1733)--польский король в 1697--1706 и 1709--1733
годы и курфюрст саксонский (Фридрих Август 1; 1694--1733). Участвовал в
Северной войне против Швеции. В 1706 году был разбит Карлом XII и отрекся от
престола, после разгрома шведов Петром I под Полтавой (1709 год) вновь стал
королем Польши. Прим. реценз.
8 Фридрих I (1657--1713)--первый прусский король (1701--1713).
Покровительствовал наукам и искусствам. При нем был основан университет в
Галле, Академия искусств и Академия наук в Берлине. Сохранилась переписка
Г.-В. Лейбница с Софией Шарлоттой, второй женой Фридриха I, посвященная
философским и научным вопросам. Прим. реценз.
9 Леопольд I (1640--1705) - император Священной Римской империи из
династии Габсбургов, вел многочисленные войны (с турками за испанский
престол и др.). Прим. реценз.
10 В те времена лиц, подделывавших золото, фальшивомонетчиков казнили
на виселице, окрашенной под золото.
11 Меркурий -- ртуть.
12 На лицевой стороне медали был изображен Меркурий -- Гермес с
крылышками на пятках и с кадуцеем (магическим жезлом, обвитым двумя змеями)
в руках, что означало превращение ртути в золото.
13 Нельзя целиком согласиться с автором, что Иоганн Иоахим Бехер
(1635--1682) был чужд алхимии. По характеристике М. Джуа, Бехер "проявил
себя как человек честный и чуждый обману. Был скорее фантазером, чем
химиком-практиком" (М. Джуа. История химии: Пер. с итал./ Под ред. проф. С.
А. Погодина. М.: Мир, 1975. 478 с.; с. 96). Бехера считают одним из
создателей теории флогистона. Прим. реценз.
14 Базилий Валентин -- бенедиктинский монах. По мнению многих историков
химии, личность легендарная. Многие работы, вышедшие под его именем,
принадлежат Иоганну Тельде, опубликовавшему их в начале XVII века и
утверждавшему, что нашел рукописи некоего монаха из Эрфурта, написанные в
начале XVI в. Этому трудно поверить, так как в этих манускриптах описаны
операции и явления, ставшие известными лишь столетием позже. Прим. реценз.
15 Его образование связано с наличием примесей серебра и золота в
исходных материалах.-- Прим. ред.
16 Сендивогий (Сендивогиус, Седзивой) Михаил (1566?--1646)--польский
алхимик. Получил образец философского камня от Александра Сетония
Космополита (XVI век), которого он вызволил из тюрьмы, куда тот был брошен
за отказ выдать тайну чудодейственной лигатуры. Но секрет приготовления
порошка Сетоний унес в могилу.
Получив лигатуру и рукопись от отчаявшегося Сетония, Сендивогий
отправился гастролировать по Германии, обманывая доверчивых правителей,
получая от них деньги, царские почести и поместья. Между тем порошка
становилось все меньше, да и то, что осталось, похищает у него завистливый
конкурент. Появившись вновь, спустя четверть века, на европейской
алхимической сцене в Варшаве бывший "германский Гермес" являл собой
печальное зрелище. "Его удел -- торговля черт знает какой дрянью под видом
эликсира жизни, выманивание денег на сомнительные алхимические опыты у
знатных богатеев,... подделка денег." (В. Л. Рабинович. Алхимия как феномен
средневековой культуры. М.: Наука, 1979, 392 с.; с. 175). Прим. реценз.
17 Академия естественных наук (Парижская академия наук) -- одна из пяти
академий, входящих в Институт Франции. "Отчеты Парижской академии наук"
(Comptes Rendus de l'Academie des Sciences) -- всемирно известный научный
журнал.
18 Тенар Луи Жак (1777--1857) -- французский химик, профессор
Политехнической школы в Париже, Коллеж де Франс и Парижского университета.
Известен своими многочисленными анализами разнообразных соединений. В 1818
году открыл перекись водорода. Прим. реценз.
19 Копп Герман (1817--1892)-- немецкий химик и историк химии, профессор
университетов в Гиссене и Гейдельберге. Провел обширные исследования по
определению ряда физических свойств органических соединений в зависимости от
их состава, например точек кипения в гомологических рядах спиртов, кислот,
эфиров и т. д. Автор четырехтомного курса "История химии" (1843--1847).
Прим. реценз.
20 Франц Иосиф I (1830--1916)--император Австрии и король Венгрии, из
династии Габсбургов. В 1867 году преобразовал два государства в двуединую
монархию--Австро-Венгрию (распалась в 1918 году после поражения в первой
мировой войне и подъема национально-освободительного движения). Прим.
реценз.
21 Речь идет о Максимилиане I (1832--1867)-- австрийском эрцгерцоге из
династии Габсбургов. В 1857--1859 годы был генерал-губернатором австрийских
владений в Италии. Во время англо-франко-испанской интервенции в Мексику
(так называемая Мексиканская экспедиция, 1861--1867 годы) Максимилиан был в
1864 году по указанию Наполеона III возведен на мексиканский престол. После
провала экспедиции Максимилиан, пытавшийся сопротивляться мексиканским
войскам, был взят в плен и в июне 1867 года расстрелян. Прим. реценз.
22 История открытия фосфора -- одна из самых интересных в истории
открытия химических элементов и ее стоит рассказать подробнее.
Хенниг Бранд начал с того, что уверовал, будто моча содержит
первоматерию. Посему он собрал в солдатских казармах около тонны исходного
вещества. Получив после ряда описанных в тексте манипуляций светящийся
порошок, он, естественно, принял его за то, что искал, то есть за первичную
материю. Дело стало за малым -- получить из чудесной светоносной пыли
золото. Но это-то и не удалось сделать Бранду. По словам В. Л. Рабиновича
"мифическое сознание наталкивалось на внемифическую реальность. Иллюзия
рушилась, зато обретала иную -- научно-коммерческую жизнь, в некотором
смысле тоже мифическую" (Алхимия как феномен средневековой культуры. М.:
Наука, 1979, с. 172).
Эта вторая жизнь "светоносца" началась с того, что два приятеля, И.
Кункель фон Левенштейн и Д. Крафт. прослышав об открытии Бранда, решили
купить у него секрет приготовления фосфора. Случилось так, что Крафт обманул
Кункеля, купив секрет у Бранда и организовав собственное, весьма доходное,
дело.
Как-то во время показа фосфора при дворе ганноверского государя на
сеанс зашел Г. В. Лейбниц. Пораженный тем, что он увидел, Лейбниц также
покупает у Бранда его секрет.
Вслед за Лейбницем о приготовлении фосфора узнает некогда одураченный
Крафтом Кункель и тоже начинает торговать светящимся порошком, а один из его
друзей публикует трактат: "Постоянный ночной светильник, иногда сверкающий,
который долго искали и наконец нашли".
В сентябре 1677 года Крафт посещает Р. Бойля и у него дома, в
присутствии нескольких членов Королевского общества, показывает свечение
фосфора. Бойль разгадал тайну получения препарата, в чем ему помог его
ассистент А. Г. Хэнквиц. Бойль пишет статью, озаглавленную "Способ
приготовления фосфора из человеческой мочи" (датирована 14 октября 1680
года), и в запечатанном конверте передает ее в Королевское общество с
припиской "... не вскрывать без согласия автора". (Статья была напечатана
только после смерти Бойля -- в 1693 году). Но в 1680 и 1682 годах Бойль
опубликовал два трактата, посвященных фосфору.
Хэнквиц между тем поставил торговлю фосфором "в виде изящных белых
сигарообразных палочек" на широкую ногу.
А что стало с остальными героями этой истории? И Бранд, и Крафт, и
Кункель желали большего, чем необычайное свечение.-- им надо было золото. Но
золото получить не удавалось. Кункель оставил эту затею. Бранд по протекции
Лейбница устроился при дворе ганноверского государя, а обманщик Крафт
разорился. Прим. реценз.
23 Парацельс, подлинное имя Филипп Ауреол Теофраст Бомбаст фон
Гогенгейм (1493--1541)-- немецкий врач и химик. Создал новое медицинское
учение, опиравшееся на наблюдения врачей, аптекарей, алхимиков разных стран.
Большое значение Гогенгейм придавал роли химии в медицине. Согласно
основанному им учению-- иатрохимии (от греч. "иатрос"-- врач),-- главная
причина болезней состоит в нарушении химических процессов в организме. "Не
надо говорить: алхимия, делай золото и серебро,-- писал Парацельс,-- следует
сказать: делай arcana (лат. arcana medicamentia -- тайные средства) и тем
излечивай от болезней". Псевдоним Paracelsus означает "превосходящий Цельса"
(Авл Корнелий Цельс, ок. 25 года до н..э.--ок. 50 года н. э., древнеримский
врач). Прим. реценз.
24 "Малый физический свод" (лат.).
25 Указанная работа И. Юнгиуса (1587--1657), выдающегося немецкого
логика, математика, медика и химика, действительно была написана около 1630
года, но издана только после смерти автора, в 1662 году. Прим. реценз.
26 "Химик-скептик" (англ.).
27 "Химик-скептик" Р. Бойля (1627--1691) написан в форме диалога. Один
из его участников (Элевтериус) в ходе беседы обращается к другому (Карнеаду,
представляющему взгляды Бойля) с такими словами: "... После того, как Вы
столь непринужденно изложили свои сомнения в том, существует ли какое-либо
определенное число элементов, не обратитесь ли Вы к вопросу о том,
существуют ли элементы вообще". На что Карнеад отвечает: "Не будет абсурдным
сомневаться в этом, ибо надо еще доказать, столь ли уж необходимо допускать
существование каких-либо элементов или гипостатированных начал вообще". И
далее, чтобы быть правильно понятым, Бойль-Карнеад формулирует традиционное
для своего времени понимание элемента, приведенное в основном тексте. Но
корпускулярное учение самого Бойля не оставляло места для химических
элементов. (Подробнее см. Всеобщая история химии. Становление химии как
науки. М.: Наука, 1983, гл. 1). Прим. реценз.
28 Следует заметить, что хотя концепция флогистона была сформулирована
Шталем в 1697 году, более или менее широкое распространение она получила
лишь в 1750 годах и, кстати, неоднократно видоизменялась разными авторами.
Поэтому "период флогистонной химии" в действительности продолжался
сравнительно недолго -- около 30 лет. Прим. реценз.
29 Открытие кислорода, тесно связанное с формированием правильного
понимания процессов горения и кальцинации заняло у Лавуазье определенное
время -- с 1771 по 1774 год. Прим. реценз.
30 М.В. Ломоносов в 1741 году выдвинул корпускулярную теорию. В
сочинении "Элементы математической химии" он писал: "Корпускулы однородны,
если состоят из одинакового числа одних и тех же элементов, соединенных
одинаковым образом: корпускулы разнородны, когда элементы их различны и
соединены различным образом и в различном числе; от этого зависит
бесконечное разнообразие тел". Под "элементом" М. В. Ломоносов разумел атом,
под корпускулой -- молекулу. Здесь заключены и идея простого и сложного
вещества, и понятие изомерии, и возможность образования молекул из
одинаковых атомов (которая отрицалась даже 100 лет спустя такими видными
химиками, как, например, Берцелиус). Ломоносов первым ввел в опыт весы.
Благодаря этому ему удалось в 1756 году экспериментально опровергнуть
флогистонную теорию. Опыты накаливания металлов в "запаянных накрепко
стеклянных сосудах" показали, что "без пропущения внешнего воздуха вес
сожженного металла остается в одной мере". Этим намечались также основы
новой трактовки процессов окисления.-- Прим. ред.
31 "Начальный курс химии" (франц.).
32 С понятием об элементе Лавуазье связывал "представление о последнем
пределе, достигаемом анализом", оговаривая, что тогда "все вещества, которые
мы еще не смогли никаким образом разложить, будут для нас элементами".
Поэтому многие вещества, которые к концу XVIII века еще не удалось
разложить, Лавуазье условно относил к элементам. Прим. реценз.
33 По свидетельству самого Д. Дальтона и в соответствии с записями в
его лабораторном журнале закон кратных отношений был им открыт в 1803 году.
Дальтон Джон (1766--1844)-- выдающийся английский ученый, создатель
химической атомистики. Впервые указал путь определения относительных атомных
весов и установил взаимосвязь между теоретическими представлениями об атомах
и элементах и опытными данными по составу химических соединений. Кроме того,
Дальтон с ранней молодости и до последнего дня жизни проводил
метеорологические наблюдения. Именно в процессе изучения состава атмосферы и
составляющих ее газов Дальтон пришел к атомной теории.
В 1792 году Дальтон открыл дефект зрения, называемый ныне дальтонизмом.
Прим. реценз.
34 Берцелиус Йене Якоб (1779--1848)-- выдающийся шведский химик, с
именем которого связано утверждение атомистической теории в химии, создание
электрохимической концепции химического сродства и другие открытия. Им были
выполнены химические анализы многих соединений и усовершенствованы
аналитические методы. Прим. реценз.
35 Спектральный анализ был открыт немецкими учеными Р. В. Бунзеном
(1811-- 1899) и Г. Р. Кирхгофом (1824--1887) в 1860 году. Прим. реценз.
36 Автор несколько односторонне оценивает задачи Конгресса и его роль в
развитии химии. К концу 1850-х годов путаница и неразбериха, связанная с
употреблением различных систем атомных весов и химических формул, а также со
смешением понятий атом, молекула, простое вещество и элемент, достигла
своего апогея. Именно с целью упорядочения и систематизации основ химической
науки и был созван Конгресс. Прим. реценз.
37 Прежде всего отметим некоторое противоречие в тексте Гофмана:
сначала он утверждает, что Д. И. Менделееву и Л. Мейеру удалось открыть
периодический закон в 1869 году, а затем пишет о том, что работа Мейера
появилась в 1870 году, тогда как Менделеев сообщил о своем открытии в марте
1869 года.
Так как вопрос о приоритете в истории открытия периодического закона
имеет долгую историю, на нем следует остановиться особо. Сначала обратимся к
фактологической стороне дела.
Дата открытия периодического закона Менделеевым известна с точностью до
дня --17 февраля (1 марта) 1869 года. Ч